Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, применяемые в гальванотехнике

    Для получения металлических осадков требуемого качества в гальванотехнике приходится применять более сложные условия электролиза, чем в других электрометаллургических процессах. Поэтому знание закономерностей образования и роста кристаллов при электроосаждении металлов в гальванотехнике имеет первостепенное значение. [c.334]


    Электрохимическое выделение металлов из водных растворов их соединений лежит в основе гидроэлектрометаллургических процессов, т. е. процессов извлечения металлов из руд (электроэкстракция) и их очистки (рафинирование) при помощи электролиза. Гидроэлектрометаллургическим путем получают и очищают такие металлы, как медь, никель, цинк, кадмий, олово, свинец, серебро, золото, марганец и др. Гидроэлектрометаллургия позволяет получать технически чистые металлы и в ряде случаев вести успешную переработку бедных руд. Электрохимическое выделение металлов используется для защиты основного металла от разрушения при помощи покрытий из более устойчивых металлов или сплавов, а также для придания изделиям красивого, декоративного вида (гальванотехника). Кроме того, выделение металлов примен.чется для получения копий и воспроизведения художественных предметов, изготовления лент, бесшовных труб, печатных схем и т. п. (гальванопластика). Возможность использования процесса электролиза с выделением металлов для практических нужд была открыта в 1837—1838 гг. русским академиком Б. С. Якоби, который по праву может считаться изобретателем и отцом гальванопластики и родственных ей процессов. [c.416]

    Отдельным направлением электролиза водных растворов с осаждением металлов является гальванотехника. Гальванотехника широко используется для покрытия металлических изделий с целью предохранения их от коррозии, придания им декоративного вида, твердости и других качеств. В гальванотехнике широко используются такие способы покрытия, как никелирование, хромирование, цинкование, меднение, лужение, серебрение, золочение и др. Гальванотехника применяется также для изготовления металлических копий, типографских клише, печатных схем в радиотехнике и др. [c.138]

    Исследования поляризации и перенапряжения на отдельных электродах имеют большое теоретическое и практическое значение. В технических электролизах в одних случаях приходится принимать меры для уменьшения химической и концентрационной поляризации, например, при электролитическом получении водорода (так как высокая поляризация на электролизе вызывает дополнительный расход электрической энергии на протекание процесса), в других, наоборот, стремятся увеличить поляризацию, например, при электроосаждении металлов в гальванотехнике, так как это позволяет получить более высокого качества осадки металлов. Величина концентрационной поляризации может быть уменьшена перемешиванием раствора. Вредное действие химической поляризации устраняется добавлением окислителей или восстановителей, которые называются деполяризаторами. Катодными деполяризаторами служат окислители, анодными — восстановители. Деполяризаторы широко применяются для проведения различных электрохимических реакций органического синтеза, а также в различных гальванических элементах. [c.268]


    В качестве металлов для покрытия обычно применяют металлы, образующие на своей поверхности защитные пленки. Как уже говорилось, к таким металлам относятся хром, никель, цинк, кадмий, алюминий, олово и некоторые другие. Значительно реже применяются металлы, имеющие высокий электродный потенциал— серебро, золото. Существуют различные способы нанесения металлических покрытий наибольшие преимущества имеют методы гальванотехники (см. 103). [c.559]

    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]

    ЭЛЕКТРОЛИЗ — химический процесс разложения электролита в растворе нли расплаве при прохождении через него постоянного электрического тока, связанный с потерей или присоединением электронов ионами или молекулами растворенных веществ. При этом на катоде в результате присоединения электронов к ионам или молекулам образуются продукты восстановления, а на аноде в результате потери электронов — продукты окисления. В химической иро-мышленности Э. применяется для получения металлов и их соединеиий, очистки металлов (электрорафинирование), производства щелочей, хлора, водорода, кислорода, хлоратов, перхлоратов, тяжелой воды, многих органических веществ и др. Э. является методом количественного анализа (электроанализа). Э. используется в гальванотехнике для нанесения различных металлических покрытий на металлические предметы и образование металлических копий из неметаллических предметов, для электроочистки воды, зарядки аккумуляторов и др. [c.289]

    В настоящее время электрохимические методы широко применяются в различных областях современной техники, составляя основу прикладной электрохимии. Главными отраслями прикладной электрохимии являются электрометаллургия, гальванотехника, электросинтез органических и неорганических соединений, производство химических источников тока, электрохимическая размерная обработка металлов, хемотроника, электрохимические методы контроля и анализа, методы защиты от коррозии. Так как различные отрасли прикладной электрохимии находятся в тесной связи с кинетикой электродных процессов, целесообразно кратко остановиться на их характеристике. [c.11]

    Одним из наиболее известных и разработанных способов нанесения металлических покрытий является электролитический (катодное восстановление). Этот способ начали широко применять с середины XIX в. Появилась специальная область применения — гальванотехника. Бесспорное преимущество этого метода заключается в экономии наносимого металла, так как даже очень тонкие слои (метод позволяет четко регулировать толщину покрытия) наделано защищают основной металл от коррозии. Валяным достоинством является работа с водными растворами, из которых мол<но осаждать до 50 металлов и сплавов. Затраты на получение гальванических покрытий относительно невелики по сравнению с другими методами. [c.134]

    Электролиз — разложение электролита (в растворе или расплаве) при прохождении через него электрического тока, связанное с потерей или присоединением электронов ионами или молекулами растворенных веществ. При этом на катоде в результате присоединения электронов к ионам или молекула.м образуются продукты восстановления, а на аноде в результате потери электронов — продукты окисления. В химической промышленности Э. применяют для получения многих металлов, а также различных веществ (щелочи, хлора, водорода, кислорода, некоторых органических веществ). Э. служит методом количественного анализа (электроанализ). Э. используют в гальванотехнике для нанесения различных покрытий, для зарядки аккумуляторов и др. [c.156]

    Хлорная кислота и перхлораты находят широкое применение в аналитической практике. Хлорная кислота используется при количественном определении калия осаждением в виде малорастворимой соли — перхлората калия. Как сильный окислитель хлорная кислота используется для окисления и разрушения органических веществ (влажное сожжение), для окисления руд. Кроме того, хлорная кислота применяется в качестве растворителя, как среда для неводного титрования, для разрушения протеинов при биологических анализах, а также как добавка к электролиту в гальванотехнике п при электролитической обработке металлов. [c.426]


    Являясь сильным окислителем, она применяется для разрушения органических веществ, как добавка к электролиту в гальванотехнике и при электрохимической обработке металлов. Хлорная кислота может быть использована для получения различных перхлоратов нейтрализацией соответствующими основаниями. Хлорную кислоту можно получать химическим путем действием серной кислоты на перхлораты. Наиболее перспективными оказались спо- [c.155]

    Применение ионитов в гидрометаллургии и гальванотехнике. В этих областях иониты широко применяются для селективного извлечения ценных металлов из производственных растворов и сточных вод гидро- [c.122]

    А. используют как поглотители при очистке газов, как сшивающие агенты в произ-ве полиуретанов, ускорители вулканизации. Соли серной и фосфорной к-т с А.-ингиби-торы коррозии, ср-ва, облегчающие размол цемента и улучшающие его кач-во. Мыла с высшими жирными к-тами (С,2, С,о—С,б, С,8 и др.)-эмульгаторы в текстильной, косметич. и мед. пром-сти. Получаемые из А. N-(2-rn-дроксиэтил)амиды-детергенты и стабилизаторы пен, компоненты мыл, моющих порошков, шампуней и лосьонов. Комплексы А. с ионами металлов применяют в гальванотехнике для бесцианидного покрытия медью и цииком, что улучшает ажезию к пов-сти и придает покрытиям блеск и устойчивость к коррозии. [c.145]

    Металлические электроды первого рода широко применяют в электрометаллургии для катодного пол) чения различных металлов— цинка, натрия и др. или для электрохимического рафинирования (очистки) металлов путем их предварительногг) анодного растворения и последующего катодного выделения. Катодное выделение. металлов лежит в основе всей гальванотехники. Анодное растворение металлов применяют для электрохимической обработки поверхности металлов. Для многих из этих процессов (особенно для электрометаллургических) в качестве электролитов применяют не водные растворы, а расплавы солей. [c.126]

    Урав нения (37) — (42) в сочетании с частными поляризаци-01нными кривыми катодной и анодной реакций с успехом применяются гари, иосл едов ании исонтактнаго выделения металлов в. гальванотехнике [12, 49, 56, 120, 126]. [c.138]

    Гексацианоферрат(И) (ферроцианид) натрия или калия находит применение в фотографии, при обработке металлов, в гальванотехнике, при гравировании, дублении, крашении и окраске тканей. Гексацианоферрат(1П) (феррицианид) применяют для производства синих пигментов. Соли щелочных металлов применяют в различных областях техники, в том числе в качестве регулятора размера кристаллов хлорида натрия. Гексадианофеп- [c.93]

    Полиэфиры на основе оксиалкилированного дифенилолпропана применяются в основном в виде слоистых пластиков, как покрытия для металлов или других конструкционных материалов и в виде литых изделий. Они могут найти широкое применение в химической, целлюлозной, бумажной, нефтяной и текстильной промышленности, а также в гальванотехнике. [c.54]

    Маннит применяется в кондитерской промышленности для питания больных сахарным диабетом имея более высокую температуру плавления, чем ксилит и сорбит, он может быть использован для производства таких видов кондитерских изделий, которые не могут быть приготовлены с применением ксилита и сорбита. Примерно половина съеденного маннита не усваивается и выделяется неизменным. Используется маннит для стабилизации перборатов находясь с боратом аммония в электролитических конденсаторах, он снижает потери тока, повышает напряжение пробоя и улучшает электрические свойства. В качестве антиоксиданта маннит используется в производстве фотопроявителей на основе метола и амидола. В гальванотехнике добавка маннита стабилизует в растворе ионы трехвалентного хрома, препятствует их окислению. Способность маннита к комплексообразованию с окислами металлов позволила применить его в паяльных флюсах. Маннит наряду с дуль-цитом используют в бактериальных средах для идентификации различных микроорганизмов. [c.182]

    Электролиз с растворимым анодом широко применяется в технике это электролитическая очистка металлов от примесей (которые остаются в аноде), т. е. электрорафиннрование металлов, а также гальваностегия и гальванопластика, являющиеся разновидностями гальванотехники. [c.193]

    В гальванотехнике медь широко применяется в основном как подслой при многослойном защитно-декоративном покрытии на изделиях из стали, цинка, цинковых и алюминиевых сплавов, перед нанесением никелевого, хромового и других видов покрытий. Пластичность, хорошее сцепле1лие, низкая пористость первого медного слоя позволяют улучшить коррозионную стойкость покрытий и снизить толщину слоев более дефицитных металлов. [c.298]

    Основная часть никеля (85—87%) расходуется на производство сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используют в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. Никель применяется в производстве щелочных аккумуляторов и в гальванотехнике. В 1980 г. производство никеля составило в капиталистических и слаборазвитых странах около 1 млн. т, в ближайшие 7—10 лет оно возрастет еще на 7% в год. [c.403]

    БОРОФТОРИСТОВОДОРОДНАЯ КИСЛОТА (тетра-фтороборная к-та) HBF< иНгО, жпдк. ио1,3284 (20%-ный р-р). Получ. взаимод. В2О3 с HF-кислотой. Примен. для произ-ва фтороборатов, очистки пов стей и полировки металлов компонент электролитов в гальванотехнике кат. в орг. синтезе. [c.81]

    Металлич. 3. п. оказывают протекторное действие. Их наносят гальванич. способом (см. Гальванотехника) или распылением расплавл. металла. Защитное действие покрытий зависит от их толщины и структуры. Для защиты от атмосферной коррозии примен. покрытия из цинка (толщиной до 30 мкм), никеля (до 15 мкм), хрома (до 200 мкм) или комбинированные. [c.205]

    ГАЛЬВАНОПЛАСТИКА, см. Гальванотехника. ГАЛЬВАНОСТЕГИЯ, см. Гальванотехника. ГАЛЬВАНОТЕХНИКА, получение на пов-сти изделия или основы (формы) слоев металлов из р-тв их солей под действием постоянного электрич. токв. Различают 1) гальваностегию-нанесение на пов-сть изделия тонких, обычно до иеск. десятков мкм, металлич. покрытий и 2) гальванопластику-осаждение толстых, часто достигающих неск. мм, легко отделяющихся от основы (формы) слоев металла, точно воспроизводящих рельеф основы. При прохождении тока через р-р соли положит, иоиы металла, образующиеся На аноде, присоединяя электроны, образуют на катоде нейтральные атомы, металл кристаллизуется и покрывает катод сплошным слоем (см. Электрокристаллизация). Разряду ионов предшествует их миграция и диффузия в р-ре. Катодом служит покрываемое изделие или основа, анодом-обычно тот же металл, к-рый выделяется на катоде. Если применяют нерастворимые аноды, в электролит периодически добавляют соединения осаждаемого металла при этом вместо анодного растворения происходят др. анодные р-ции, напр, выделение Oj. Эффективное ср-во регулирования св-в покрытия-введение в электролит орг. добавок, к-рые, адсорбируясь на пов-сти осаждаемого металла, меняют условия его кристаллизации. Ми, металлы выделяются на катоде совместно с Н], к-рый понижает выход металла по току и изменяет св-ва покрытий. Скорость выделения Hj обычно регулируют добавлением в электролит буферирующих неорг. соединений. Для повышения электропроводности р-ров в них дополнительно вводят неорг. соли. [c.499]

    К. применяются в качестве титрантов в комплексонометрии для разделения и выделения ионов металлов для растворения и предотвращения образования разл. отложений (обусловленных, напр., жесткостью воды и коррозией) на пов-сти теплоэнергетич. или др. оборудования как добавки в цемент и гипс для удлинения сроков их твердения для стабилизации пищ. продуктов как ср-во от хлороза растений и анемии животных для выведения из организма токсичных металлов в качестве умягчителей воды как компоненты моющих ср-в, фиксаторов в фотографии и бесцианистых электролитов в гальванотехнике. [c.440]


Смотреть страницы где упоминается термин Металлы, применяемые в гальванотехнике: [c.453]    [c.573]    [c.573]    [c.191]    [c.278]    [c.278]    [c.414]    [c.96]    [c.49]    [c.44]    [c.234]    [c.269]    [c.361]    [c.522]    [c.719]    [c.137]    [c.670]   
Смотреть главы в:

Гальванотехника для мастеров -> Металлы, применяемые в гальванотехнике




ПОИСК





Смотрите так же термины и статьи:

Гальванотехника



© 2024 chem21.info Реклама на сайте