Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение кислорода и пути выделения

    Потенциалы выделения металлов при малой плотности тока в больщинстве случаев равны или почти равны их электродным потенциалам для растворов данной концентрации, т. е. перенапряжения на них незначительны. Перенапряжение при выделении водорода и кислорода на ряде металлов довольно велико. Перенапряжение зависит от материала электрода и возрастает при повышении плотности тока. Так, при выделении газообразного водорода перенапряжение, соответствующее началу выделения пузырьков газа, на гладкой платине равно 0,09 в, а на ртути равно 0,78 в. Экспериментально перенапряжение определяют различными методами путем измерения потенциалов разложения, методом построения поляризационных кривых и т. д. [c.268]


    В результате четкой локализации коррозионных разрушений разработан эффективный способ защиты от коррозии участков (трубопроводов, штуцеров, вентилей и т. п.) стекания тока с титана путем создания электрического контакта этих участков с деталями — анодными стекателями тока (рис. 7.5). Эти детали должны быть изготовлены из материалов с низким перенапряжением анодных процессов выделения хлора и кислорода, протекающих при потенциалах, отрицательней потенциала пробоя защитной пленки на титане. Материалы для изготовления стекателей тока должны обладать коррозионной стойкостью [c.249]

    В настоящее время можно считать, что понятие напряжение разложения не имеет определенного физического смысла. Величина 7н-р не может быть рассчитана термодинамическим путем. Действительно э. д. с. кислородно-водородного обратимого элемента составляет 1,23 в, в то время как наблюдаемое при разложении воды Пиф = 1,7 в. Разность в 0,43 в складывается из значений перенапряжений при выделении кислорода и [c.237]

    Еще одно направление неорганического электросинтеза на алмазных электродах — получение сильных окислителей. Этому благоприятствует высокое перенапряжение анодного выделения кислорода и, как следствие, возможность достижения высоких анодных потенциалов. При потенциале 2,2 В на алмазном электроде можно получить пероксо-дисульфат 520 (при окислении ЗО [207[), Ан(П) (окислением ионов А8+ в концентрированных растворах НМОз [208]), РеО путем окисления ионов Ре , а также озона (см. выше). Несмотря на параллельное протекание побочной реакции анодного выделения кислорода, выход пероксодисульфата по току составляет 15%. [c.64]

    Существенные резервы снижения расхода электроэнергии имеются в электрометаллургии алюминия и гидрометаллургии цветных металлов. В первом случае это создание более устойчивых к окислению углеродных анодов, во втором — применение нерастворимых анодов с низким перенапряжением выделения кислорода. Другой путь предложен в работе [25]. Он заключается в замене процесса выделения кислорода окислением угля (угольной крошки). Ориентировочные расчеты показывают, что таким образом можно будет сэкономить до 25 /о электроэнергии, в том числе и в тех процессах электроосаждения металла, которые протекают с нерастворимыми анодами. [c.13]

    Хорошей электронной проводимостью обладают пассивирующие слои на железе, никеле, хроме и на некоторых других металлах, а также очень тонкие слои на благородных металлах. При исследовании поведения железа в азотной кислоте методом применения переменного тока Феттеру не удалось обнаружить какого-либо сопротивления R слоя прохождению электронов R < <С 0,1 ом-см ). На основании данных, приведенных на рис. 348— 350, можно сделать вывод о возможности выделения кислорода при обычных перенапряжениях. Феттер показал (прежде всего теоретически), что на пассивирующем слое, характеризуемом скачками потенциалов на фазовых границах металл/окисел к окисел/электролит, несмотря на падение потенциала внутри слоя, при достаточно хорошей электронной проводимости могут устанавливаться обратимые окислительно-восстановительные потенциалы, определяемые концентрациями окислителей и восстановителей. Равновесие на фазовой границе металл/электролит относительно находящейся в электролите окислительно-восстанови-тельной системы может осуществляться в том случае, когда разность потенциалов такова, что электрохимический потенциал г е = = Це — ф электронов в металле равен соответствующему потенциалу электронов в электролите (см. 13). Если между металлом и электролитом имеется пассивирующий слой, то при электронном равновесии между металлом и электролитом электрохимический потенциал электронов г е должен быть постоянным также во всем пассивирующем слое и равным потенциалу электронов в металле и в электролите, содержащем окислительно-восстановительную систему. При этом характер распределения электрического потенциала ф на пути от металла к электролиту не имеет значения. Такой вывод непосредственно вытекает из данных рис. 352. [c.815]


    С точки зрения сопряженных процессов (окислительного и восстановительного) наличие электроположительной фазы в корродирующем сплаве может рассматриваться не как. наличие катодных участков, а как присутствие своеобразных катализаторов для восстановительного процесса — выделения водорода (путем снижения его перенапряжения) или ионизации кислорода. [c.513]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (ХУ1-5) величина 8г не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода (+1,23 в при ан+ = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала большинство металлов становится термодинамически неустойчивыми, и вместо реакции [c.383]

    Как известно, выделение газообразного кислорода из растворов кислот происходит при потенциале анода более положительном, чем равновесный потенциал кислородного электрода (+1,23 В), на значение кислородного перенапряжения при данной плотности тока. Однако это справедливо лишь для ряда металлов (Р1, Р(1, Аи) и оксидных электродов, стойких в растворах кислот в условиях анодной поляризации. Для большинства других металлов вместо выделения кислорода происходит их анодное растворение или окисление (пассивация). В щелочных растворах могут быть применены, например, Ре, N1, С(1 вследствие того, что равновесный потенциал кислорода у них менее положителен (+0,401 В). Таким образом, многообразие форм и путей протекания реакции выделения кислорода затрудняет выявление закономерностей электрохимического процесса окисления органических соединений. [c.87]

    Генерация активных частиц на поверхности электрода при высоких потенциалах может происходить путем адсорбционного взаимодействия с компонентами химической среды или через разряд и хемосорбцию разрядившихся частиц, как правило, радикального характера. В этом случае, как это показано в разделе 1 настоящей статьи, в обычные закономерности классической электрохимической кинетики, связывающей структуру двойного электрического слоя со скоростью электродной реакции (1), включается влияние усложнившейся поверхности раздела электрод/раствор за счет хемосорбированных частиц дипольного характера [32]. Благодаря меньшему влиянию электрического поля на снижение энергии активации в электродных реакциях при такой структуре скачка потенциалов резко уменьшается коэффициент переноса, увеличивается перенапряжение таких процессов, как выделение кислорода, и в то же время появляется возможность возникновения электродных реакций, требующих высокого значения потенциала. В то же время общие законы разряда частиц на электроде остаются неизменными, хотя в уравнения кинетики включаются дополнитель- [c.166]

    Изменения свойств коррозионной среды можно достичь путем удаления из окружающей среды окислителей (например, растворенного кислорода) или введением в нее специальных веществ (ингибиторов), способных замедлить процесс коррозии. Механизм действия ингибиторов очень разнообразен и связан со смещением потенциалов анодного или катодного процесса путем образования на металле оксидной пленки или с повышением перенапряжения выделения водорода. [c.63]

    N1, d и другие, так как равновесный потенциал кислорода у них менее положителен ( + 0,401 В приадр =1 и 25 °С). Эмпирически установлено, что в области средних плотностей тока ( 10 А/см ) перенапряжение кислорода при выделении из щелочных растворов растет в следующем ряду металлов Ре, N1, С(1, РЬ, Аи, Р1. Таким образом, подводя итог обсуждаемых данных, можно констатировать многообразие форм и путей протекания реакции электрохимического выделения кислорода, сложные зависимости от многих факторов, что очень затрудняет выявление кинетических закономерностей процесса. [c.61]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    Эти потенциалы относятся к активностям, равным единице (практически к 1 н. растворам), различных видов частиц при температуре 25°. В термодинамически обратимых условиях по мере повышения наложенного потенциала будет протекать сначала тот процесс, который имеет минимальный отрицательный (максимально положительный) потенциал. В таких равновесных условиях па аноде пе может возникать ни перекись водорода, ни пероксодисульфат, а может образовываться только кислород. Соответствующий теоретический потенциал ванны составляет 1,229 б в 1 п. кислоте или 0,82 в в нейтральном растворе. Однако при осуществляемых электролитических процессах можно добиться протекания реакции, требующей более высокого потенциала, преимущественно перед реакцией с более низким потенциалом, но протекающей с выделением газа, путем увеличения разности потенциалов па ванне до значений, превышающих больший потенциал, например путем примеиеиия высоких плотностей тока и использования такого материала для электродов, который требует высокого перенапряжения для выделения газа. Ничтожное образование перекиси водорода при эксплуатации электролизера с применением потенциала, достаточно высокого для возможости частичного протекания реакции (9), можно объяснить тем, что реакция (10) протекает с большей скоростью, чем реакция (9), или же тем, что уже образовавшаяся перекись водорода, как только возникает некоторая невысокая ее концентрация, исчезает за счет реак- ции (12). Исчезновение перекиси водорода возможно также за счет неэлектролитического разложения ее в среде с высоким pH, поскольку перекись водорода очень неустойчива в щелочной среде. Поверхности анодов также могут быть причиной значительного разложения.  [c.108]

    Следует заключить, что не существует единого пути создания коррозионностойкого сплава, ка не существует и металлического сплава, устойчивого в любых условиях. В зависимости от условий коррозии пути подбора и создания коррозионностойких сплавов будут весьма сильно видоизменяться. Легирование стали значительным количеством хрома (переход к хромистым сталям) является созершенным методом защиты в условиях работы сплава в пассивном состоянии (анодный контроль), но будет совершенно бесполезным при работе конструкции в неокислительной кислоте (НС1, H2SO4), где протекает коррозия этих сталей с катодным контролем. Легирование титана большим количеством (до 32%) молибдена повышает устойчивость сплава в солянокислых растворах, но будет вредно, если в этих растворах присутствуют окислителя и кислород наоборот, в этих средах более положительный эффект будет получен от модифицирования титана ничтожными присадками (0,2—0,5%) палладия. Может быть приведено большое число подобных примеров. Общей ориентировкой может служить такое правило. Изменение состава сплава следует производить в том направлении, чтобы в предполагаемых условиях эксплуатации достигалось дальнейшее повышение основного контролирующего фактора коррозии. Например, если основной металл в данных условиях не склонен к пассивации п корродирует в активном состоянии с выделением водорода, то следует изыскивать методы изменения состава и структуры поверхности сплава, вызывающие повышение катодного контроля, например повышение перенапряжения водорода, снижение поверхности активных катодов. Для условий, в которых возможна пассивация основы сплава, наибольший эффект будет получен от добавления в сплав присадок, повышающих пассивируемость основы или повышающих эффективность катодного процесса. [c.21]

    По этой методике удается определить критерии механизма кислородной реакции. В табл. 3 перечислены значения дУ1д п1 для реакций выделения и ионизации кислорода для 14 различных путей кислородных реакций, проанализированных в последнее время [21]. В некоторых случаях для данной замедленной стадии выделения кислорода приводятся две величины д]/1д п1. Одна относится к предельно низким (низкие перенапряжения), другая к предельно высоким заполнениям поверхности (высокие перенапряжения) промежуточными частицами. Эти критерии наряду с другими, такими, как (9У/(ЗрН и д V д ogpo2 для анодной и катодной реакций, используют для определения механизма кислородной реакции на различных электрокатализаторах [1, 21, 47, 97, 134]. [c.387]

    Уменьшение удельного расхода электроэнергии в электрохимических производствах можно добиться снижением перенапряжения и деполяризацией электродных процессов. Второй путь особенно желателен, если замена одного процесса другим, менее энергоемким, сопровождается получением более ценного продукта. Технически важной задачей с этой точки зрения является деполяризация катодного выделения На кислородом, приводящая к значительному снил ению катодного потенциала и протекающая с образованием Н2О2 или ее производных. Значительные успехи в разработке теории кислородной деполяризации и установлении механизма процесса восстановления кислорода достигнуты благодаря работам А. Н. Фрумкина 1И, А. И. Красильщикова [2], Н. Д. Томашова [3], 3. А. Иофа [4], В. С. Багоцкого [5] и др. Однако большая часть исследований проводилась при низких плотностях тока, не имеющих промышленного значения. Поэтому, не считая использования угольных электродов воздушной деполяризации в ряде гальванических элементов, процесс кислородной деноляризации все еще не нашел практического применения. [c.849]


Смотреть страницы где упоминается термин Перенапряжение кислорода и пути выделения: [c.252]    [c.11]    [c.129]    [c.115]    [c.115]    [c.336]   
Теоретическая электрохимия Издание 2 (1969) -- [ c.382 ]




ПОИСК





Смотрите так же термины и статьи:

Перенапряжение



© 2024 chem21.info Реклама на сайте