Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции окиси этилена с двуокисью углерода

    Сущность метода. Метод основан на том, что продукт реакции дикетена в серной кислоте с резорцином при облучении УФ-светом люминесцирует синефиолетовым цветом. Чувствительность определения 0,02 мкг в анализируемом объеме раствора. Ацетон (до 0,17 мг), ацетилен, метан, этилен, окись и двуокись углерода, уксусная кислота и уксусный ангидрид (до 0,07 мг) не мешают определению. Метод пригоден для суммарного определения кетона и дикетена, [c.597]


    На первой стадии происходит гидрохлорирование ацетилена, содержащегося в исходной смеси. Полученный винилхлорид экстрагируется дихлорэтаном, а оставшийся в газе этилен подвергается хлорированию до дихлорэтана. Реакция протекает в жидкой фазе (в дихлорэтане) в присутствии хлорного железа в качестве катализатора. Выделенный путем конденсации дихлорэтан перерабатывается затем в винилхлорид обычным путем, а образующийся хлористый водород используется для гидрохлорирования ацетилена. Процесс удобен также тем, что отходящие газы, содержащие метан, водород, окись и двуокись углерода, могут использоваться как топливо для крекинга исходного бензина и дихлорэтана. Хлорирование и дегидрохлорирование осуществляются под небольшим давлением (4—7 ат). [c.22]

    Кроме того, в продуктах реакции содержатся в небольших ко- личествах метан, этан, этилен, азот, кислород, водород, окись и двуокись углерода, пары воды, углерод (сажа) и др. Количество этих примесей незначительно и зависит главным образом от чистоты [c.46]

    Различное поведение никелевого и окисного катализаторов, а также катализатора на основе керамики видно из баланса по углероду, приведенного на рис. 6. На никелевом катализаторе около 90% углерода пропана превращается в окись углерода. Остальное количество переходит в метан и двуокись углерода. На окисном катализаторе в таких же условиях реакции- 40% углерода пропана превращается в окись углерода, 50%—в метан, а остальное количество переходит в этилен и двуокись углерода. При применении керамического материала превращение в окись углерода незначительно - 8% углерода пропана переходит в окись углерода, [c.469]

    Изучение окисления окиси этилена на серебре показало, что она превращается в двуокись углерода и воду, но количества СО2 и Н2О не эквивалентны израсходованной окиси этилена, и это заставило предположить образование органического остатка X на поверхностя серебра. Кроме того, при пропускании окиси этилена над серебром в продуктах реакции был обнаружен этилен, который мог образоваться при разложении окиси этилена. По приведенной выше схеме предполагаются разные пути превращения этилена этилен окисляется в окись этилена (реакция 3), которая изомеризуется в ацетальдегид (реакция 6) и адсорбированный остаток X (реакция 7). Последний разлагается на этилен и кислород (3) и окисляется в СО2 и Н2О (10). Этилен может превратиться в продукты глубокого окисления, минуя стадию окиси этилена,— путем образования (2) и разложения (5) формальдегида. Ацетальдегид, образующийся из окиси этилена, также превращается в продукты глубокого окисления (9). [c.76]


    Такие примеси, как водород, окись углерода, двуокись углерода, метан, этан и этилен, в этой реакции не участвуют и не влияют на скорость превращения ацетилена в хлорвинил. Наоборот, эти газы оказывают положительное влияние, так как повышают коэффициент теплопередачи. [c.205]

    Продукт реакции представляет собой смесь ацетилена, бутадиена-1,3 (диацетилен), полимеров, жидких при нормальной температуре, и ароматических углеводородов кроме того, продукт содержит этилен, окись углерода, двуокись углерода и водород. [c.23]

    Эту реакцию проводят при температуре около 360°С в присутствии хлористого водорода в стационарном слое палладий-це-зий-ванадиевого катализатора при низкой степени конверсии этилена за один проход и 100%-ной степени конверсии синильной кислоты. Выход акрилонитрила составляет 74% по этилену и 88% по синильной кислоте. Основными побочными продуктами являются ацетонитрил, окись углерода, двуокись углерода, хлорпропионитрил, дихлорэтан и хлористый винил. [c.208]

    Продукты эти большей частью вырабатываются в значительных количествах (отсюда и название — тяжелый органический синтез), и для их получения используются чаще всего непрерывные процессы с применением катализаторов нередко реакции протекают при высокой температуре, а иногда и при высоком давлении. В качестве сырья в основном органическом синтезе используют простые по строению веп .ества, преимущественно газы. Это углеводороды жирного ряда парафины (метан и его гомологи), олефины (этилен, пропилен, бутилены) и ацетилен, а также окислы углерода (окись и двуокись), водород, водяной пар. В меньших количествах применяются также ароматические углеводороды и их производные. Все эти вещества получают переработкой нефти, ископаемых углей, природного газа они содержатся в природном и попутном нефтяном га.зе (парафины), газах нефтепереработки (парафины и олефины) и в коксовом газе (этилен, пропилен, метан, водород). Двуокись углерода обычно выделяют из различных газов — отходов других производств. [c.254]

    Обычными преобразованиями матрицы находим, что максимальный порядок отличного от нуля определителя равен 2 это соответствует рангу матрицы, числу независимых реакций и ключевых компонентов. В столь простом случае такое решение очевидно из того, что вторая реакция является половиной суммы первой и третьей реакций. Для выбора ключевых веш,еств также используют методы матричной алгебры, а в более простых случаях их подбирают таким образом, чтобы они характеризовали протекание каждой из независимых реакций. Такие решения могут быть неоднозначными, и, например, в примере окисления этилена независимой может быть любая пара реакций, а ключевыми веществами могут быть этилен и окись этилена, этилен и двуокись углерода или окись этилена и двуокись углерода. [c.215]

    Из контактных аппаратов продукты реакции направляют на охлаждение. Получаемые при конденсации жидкие углеводороды подвергают дистилляции с разделением на бензиновую, керосиновую и парафиновую фракции. Из парафиновой фракции путем охлаждения и кристаллизации извлекают парафин. Для улавливания паров жидких углеводородов и газообразных углеводородов Сд—С4 несконденсировавшиеся при охлаждении газы пропускают через адсорберы, заполненные активным углем. Выходящий из адсорберов газ содержит метан, этан, этилен, непрореагировавшие окись углерода и водород, а также двуокись углерода и азот. Этот газ либо возвращается в производство на вторую (или третью) ступень синтеза, либо используется в качестве газообразного топлива. Уловленные в адсорберах углеводороды периодически отгоняют перегретым водяным паром. Фракцию углеводородов —Су и выше используют в качестве легкого бензина. Газовую смесь (так называемый газоль), состоящую главным образом из углеводородов С3 и С4, целесообразно использовать для химической переработки (см. рис. 133 на стр. 353). [c.351]

    Для этого процесса применимы также катализаторы процесса дегидрирования этилбензола в стирол. Так, например, при применении для дегидрирования изопропилбензола цинкового стирольного катализатора наблюдается довольно большая активность и селективность в ходе образования а-метилстирола. В качестве побочных продуктов образуются небольшие количества бензола, толуола, этилбензола и стирола, а в качестве газообразных—метан, этилен, пропилен, двуокись и окись углерода (две последние за счет реакции водяного газа с попутно образующимся углеродом). Побочные продукты образуются в результате термического разложения изопропилбензола и продуктов реакции, а также в [c.248]


    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Каталитическое окисление эта1на, в отличие от пропана и бутана, должно давать менее сложный состав продуктов реакции. Однако даже на основании простейших теоретичеоких предпосылок можно ожидать образование формальдегида и ацетальдегида, соответствующих спиртов, кислот, окиси этилена и других соединений, которые идентифицированы при гомогенном некаталитическом превращении этана [3]. В газовой фазе могут присутствовать окись и двуокись углерода, этилен, метан и ненрореагировавший этан. [c.61]

    Кинетическое исследование, отражая механизм каталитического процесса окисления этилена в целом, позволяет сопоставипт скорости отдельных стадий и определить основные и второстепенные реакции. С помощью кинетического метода, например, установлено, что этилен на серебряном катализаторе превращается в окись этилена и параллельно — в двуокись углерода и воду. Однако кинетический метод не всегда дает возможность судить о характере промежуточных продуктов, о тех элементарных химических актах, которые протекают слишком быстро, существенно не отражаясь на общей скорости процесса. [c.287]

    Приводится структурно-функциональная схема лабораторной установки, состоящей из сырьевой, реакционной и анализирутацей частей. Для анализа газообразных продуктов реакции разработана методика хроматографического анализа разделения многокомпонентной газовой смеси, содержащей водород, воздух,метан,окись углерода, двуокись углерода,этан,этилен,позволяющая проводить совместную идентификацию газовых компонентов на двух последовательно соединенных наоадочных колонках,используя один прибор. [c.29]

    Анализ литературных материалов показывает, что при окислительном Дегидрировании углеводородов различного строения выход целевых продуктов обычно сравнительно невелик и лищь в редких случаях приближается к теоретическому. Чаще значительная доля сырья расходуется в сопутствующих реакциях окисления и изомеризации, а нередко и в таких побочных процессах,-как деалкилирование, крекинг, циклизация, гидрирование, алкилирование и др. Выще уже отмечался сложный состав продуктов окислительного дегидрирования н-бутиленов. При дегидрировании этилбензола в присутствии воздуха в адиабатическом реакторе (температура газов на входе ж500°С, на выходе 625 °С) на промотированном щелочами окисном железном катализаторе наряду со стиролом (выход 43%) и непрореагйровав-шим этилбензолом (выход 16%) в продуктах реакции обнаружены бензол (3%), толуол (0,4%), метилциклогексан (0,03 /о), диэтилбензол (0,14%), этилен (0,9%), метан (0,5%), водород (0,5%), окись углерода (0,03%) и двуокись углерода 13,1%) [54]. [c.67]

    Механизм термоокислительной деструкции поликарбоната. Для инициирования реакций деструкции поликарбоната на основе дифенилолпропана в отсутствие влаги требуется затрата значительной энергии на разрыв эфирных связей. Поэтому достаточно быстрая термическая деструкция этого полимера происходит при более высоких температурах (400—500°С), чем деструкция полиэтилентерефталата и других полиэфиров. При окислении поликарбоната в указанном температурном интервале обнаруживают [107, 112— 116] в основном те же продукты, что и прн термической деструкцип воду, окись углерода, двуокись углерода, водород, формальдегид, метан, этан, этилен, фенол, крезол, этилфенол, изопропепилфенол, дифенил-карбонат, дифенилолиропан, а также ацетон, бензол, толуол, этилбензол. При термоокислении начальные скорости образования и выход продуктов, как правило, существенно больще, чем при пиролизе. [c.91]

    Гидрат окиси тетраэтил-фосфония при нагревании выделяет этан реакция, очевидно, протекает аналогично. Ацетат этого основания, Et P —О — СОСН3, в процессе сухой перегонки образует в качестве продуктов триэтил-фосфин, окись триэтил-фосфина, двуокись углерода, метан, этилен и метилэтил-кетон. Другие соли этого типа ведут себя аналогично. В сжатом виде результаты можно представить следующим образом  [c.708]

    Окись углерода С = 0 оказывает на растения такое же влияние, как этилен, однако в 2700 раз менее сильное. Двуокись углерода может действовать в растении как антагонист этилена. Причина этого, по-видимому, заключается в том, что молекула СОг структурно близка аллену и окиси углерода. Так, СОг в растении может конкурировать с этиленом за его рецептор. Поэтому физиологическая ответная реакция ткаии на данную концентрацию этилена определяется наряду с другими факторами концентрацией СОг в ткаии. Вместе с тем двуокись углерода не обладает какими-то свойствами, существенными для этиленоподобиого действия. [c.128]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]


Смотреть страницы где упоминается термин Реакции окиси этилена с двуокисью углерода: [c.308]    [c.308]    [c.317]   
Окись этилена (1967) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Окись углерода, реакции

Реакции этилена

Этилен окись



© 2025 chem21.info Реклама на сайте