Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремния индия

    Сокристаллизация является основой кристаллизационных методов очистки веществ, занимающих видное место среди других способов очистки [3—5, 29, 30]. Эти методы широко используют для получения различных материалов.Так, кристаллизационными методами получены чистые вещества для радиоэлектроники и вычислительной техники (германий, кремний, индий, галлий, мышьяк и др.), атомной энергетики (цирконий, уран, висмут) и ракетостроения (титан, хром, молибден и др.). Очистную сокристаллизацию проводят при получении полимеров, душистых веществ, льда, многих пищевых продуктов и лекарственных препаратов. [c.274]


    В своей повседневной деятельности исследователь и инженер-химик никогда не имеют дела с готовыми чистыми веществами. Наоборот, часто им приходится прилагать большие усилия и затрачивать огромные средства, чтобы получить чистые вещества, столь необходимые для работы. В настоящее время некоторые области техники просто не развивались бы, если бы не были найдены способы получения сверхчистых продуктов. Так, без особо чистых веществ (элементарных германия, кремния, индия и др.) нельзя было бы получить материалы для полупроводниковых устройств. При переработке этих веществ требуется аппаратура, сделанная также из чистейших конструкционных материалов (графита, кварца, окиси алюминия и т. д.), так как малейшие нежелательные примеси неизбежно будут переходить из реакционных сосудов в очищаемое вещество и лишать его ценных технических свойств. [c.7]

    Для многих металлов опытное значение Су близко к теоретической величине 24,942 Дж/моль-К. Например, для А1, Ре и Со Су=24,3 24,6 и 25,69 Дж/моль-К- Имеются исключения из этого правила. Для углерода, кремния, бериллия и бора опытные величины меньше теоретической, а для индия, натрия, рубидия и тория — выше опытной. [c.32]

    Помимо сурьмы в качестве пассиваторов можно использовать добавки, содержащие другие элементы индий, вольфрам, кремний, литий, барий. [c.103]

    Фосфор, мышьяк или сурьма (имеющие электронное строение внешнего энергетического уровня s pЗ и проявляющие валентность 5), будучи введенными в кристаллические решетки германия или олова (электронное строение внешнего уровня 5 р валентность 4) ведут себя как донорные примеси, т. е. отдают электроны и создают проводимость п-типа. Если же в германий или кремний ввести бор, алюминий, галлий или индий (электронное строение внешнего уровня 5 р, валентность 3), то атомы примеси захватывают четвертый электрон и полупроводник обнаруживает проводимость р-типа. [c.186]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Фосфор, мышьяк, сурьма используются для получения примесных полупроводников (/1-типа) германия и кремния, для синтеза соединений А " В — арсенид галлия ОаАз, фосфид индия 1пР и др. [c.233]

    Запасы алюминия сосредоточены в больших количествах в земной коре в виде минералов (алюминий — самый распространенный элемент в земной коре после кислорода и кремния), тогда как галлий, индий и таллий принадлежат к рассеянным элементам, содержание их в рудах не превышает обычно тысячных долей процента. Все эти металлы получают в настоящее время электролитическими методами. Наибольшее применение изо всех металлов П1 группы находит алюминий (см. 3, гл. XVI). [c.330]


    Как показано на рис. III.7, примесные атомы алюминия и фосфора замещают атомы кремния в узлах решетки. Энергетическая однородность кристалла при этом нарушается. Атомы алюминия имеют лишь по три валентных электрона, что приводит к дефициту одного электрона в каждом занимаемом ими узле кристаллической решетки. Однако при сообщении атому алюминия небольшой энергии порядка 5,5 кДж/моль он захватывает недостающий электрон, превращаясь в отрицательно заряженный ион и образуя вблизи себя положительно заряженную дырку. Электрическая нейтральность кристалла при этом сохраняется. Аналогичное алюминию действие оказывают на свойства полупроводниковых кремний и германия примеси и других элементов, таких, как бор, галлий, индий, цинк, железо, марганец. Их называют акцепторными примесями. [c.80]

    Из табл. 9 видно, что валентные электроны у алюминия связаны менее прочно, чем у галлия, индия и таллия таллий менее электроположителен, чем алюминий потенциал ионизации атома таллия выше, чем атома алюминия. Бор обнаруживает определенное сходство с кремнием. [c.156]

    Если зона перемещается вдоль слитка слева направо и при плавлении материала происходит уменьшение его объема (кремний, германий, антимонид индия), то масса вещества переносится в конец слитка (рис. 54). Перенос можно предотвратить, наклонив слиток под определенным углом (рис. 54, б). Для веществ, при плавлении которых увеличивается объем, массоперенос будет происходить в направлении, [c.93]

    Галлий используется для изготовления высокотемпературных термометров с кварцевыми капиллярами, которые позволяют измерять температуру до 1500° С. Благодаря хорошей отражательной способности индия (лучшей, чем у серебра) его используют для изготовления рефлекторов и прожекторов. Таллий ниже 73°К становится сверхпроводником и поэтому приобретает большое значение в космонавтике. Цинк-индиевыми сплавами покрывают стальные пропеллеры для придания им атмосферостойкости. Галлий и индий применяются как легирующие добавки при получении р-типов кремния и германия, для получения соединений типа А В (см. 5). Галлий может быть хорошим теплоносителем в ядерных реакторах и в системах охлаждения лазерных кристаллов. Оксид таллия увеличивает показатель преломления стекол. Оксид галлия увеличивает пропускную способность стекол для инфракрасных лучей. Оксидом индия покрывают стекла для придания им проводимости при сохранении прозрачности. [c.285]

    Галлий и индий служат легирующими добавками к германию и кремнию, используемым для полупроводниковых выпрямителей. Суль- [c.307]

    Элементы главной подгруппы III группы в природе. Получение и применение. Рассматриваемые элементы встречаются в природе только в виде соединений. По распространенности алюминий занимает третье место среди всех элементов после кислорода и кремния [содержание его в земной коре составляет 8,13% (масс.)]. Галлий, индий и таллий относятся к сравнительно мало распространенным элементам их содержание в земной коре соответственно составляет [c.435]

    Наиболее благоприятны для очистки диаграммы состояний с эвтектиками и с очень узкой областью гомогенности твердых растворов примеси в основном веществе, например индия в германии (как на рис. 52). Чем меньше единицы коэффициент распределения /(=Ств/Сж, тем лучше. Гораздо менее благоприятные условия создаются, когда примесь образует непрерывный ряд твердых растворов с основным веществом (как на рис. 6). Для примесей первого рода К=Стп/С-д,>1 (например, для бора в германии /(=17,3), а для примесей второго рода /(<1. Например, для алюминия и галлия в германии /( = 0,01, для индия /( = 0,001, для теллура и висмута /( = 4-10- и т. д. Чем К<, тем легче очищается вещество от этой примеси. Для примесей с К> метод мало эффективен, а при /С=1 очистка совсем не происходит. Например, таким образом нельзя удалить бор из кремния, так как Этим методом не достигают однородности химического состава слитка и совершенство структуры. [c.323]

    Напишите эмпирические формулы оксидов следующих элементов а) лития б) бериллия в) бора г) кремния д) азота е) мышьяка ж) селена з) рубидия и) стронция к) серебра л) кадмия м) индия н) олова о) сурьмы п) теллура р) цезия с) бария т) золота у) ртути ф) таллия х) свинца. [c.8]

    При подборе системы электродов для анализа растворов основное внимание уделяется материалу электродов, который должен быть легкодоступным и по возможности представлять собой моноизотопный элемент. Были использованы следующие высокочистые вещества кремний, индий, графит, золото, висмут и серебро. Кремний оказался мало подходящим для этих целей, поскольку линии его полиатомных ионов перекрывают аналитические линии многих примесных элементов. Металлический индий слишком мягок и имеет низкую точку плавления. Картер (1967), а также Альварец (1969) использовали электроды из золота для анализа 2 Фа и для регистрации примесей, нанесенных на поверхность электрода электролитическим методом. Графит может служить подходящей подложкой для анализа редкоземельных элементов и актиноидов, если масс-спектрометр обладает разрешением по массам по меньшей мере 2500. Например, в масс-спектре линия туллия с массой 168,9344 а.е. м. отличается от линии полимера С С лишь на 0,0690 а.е.м., и для их разделения необходимо теоретическое разрешение 2450. [c.361]


    В добиогенный период развития углерод вместе с кремнием поступал на землю через космическое облако протопланеты. Графитовые жилы в Китае, Шри-Ланке, Узбекистане, Индии, на Украине находятся в докембрийских толщах различного возраста (2400-1700 млн. лет). [c.231]

    При анализе таких твердых веществ, как кремний, германий, мышьяк, селен, олово, сурьма, хром, элементы основы отгоняются в виде летучих галогенидов, например кремний (и кремнезем) в виде 31р4. Это позволяет определять в остатке после отгонки до 10- % железа, индия, меди, никеля, таллия, цинка, фосфора, алюминия и некоторых других элементов. [c.19]

    Несмотря на исключительно многообразные возможности применения редких металлов и их сплавов, выделим здесь лишь некоторые основные области их применения. Это прежде всего ядерная техника, где необходимы такие металлы, как бериллий, ниобий и цирконий и др., в качестве материалов оболочки ядерного горючего в различных типах реакторов. Эти металлы отличаются малым сечением захвата тепловых нейтронов, высокой твердостью при рабочих температурах, хорошей теплопроводностью, устойчивостью к коррозии и т. д. Галлий и литий предложены, кроме того, в качестве рабочих жидкостей [последний— при условии его отделения от изотопа зЫ почему ) ]. Благодаря свойству значительно поглош,ать нейтроны гафний индий и европий используют для изготовления регулирующих стержней. Значительное количество редких металлов потребляет производство стали. Наряду с чистыми легирующими компонентами (например, Мо, V, , V) ряд редких и др. металлов используется в качестве раскислителей (например, редкоземельные элементы, кремний). Для современной авиационной промышленности и космической техники необходимы жаростой- [c.589]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    А. а-Ц иклопентадиенильные производные металлов получены для ртути, кремния, свинца, цинка, индия, висмута по схеме [c.42]

    В главную подгруппу И1 группы входят алюминий, бор, галлий, индий и таллий. Положение алюминия в периодической системе хорошо согласуется с его амфотерностью. В самом деле, с одной стороны, алюминий расположен в периоде на границе между типичным металлом магнием и неметаллом кремнием. С другой стороны, алюминий в группе находится между бором и остальными элементами, для которых более характерны металлические свойства. Бор относится к неметаллам, его гидроксид Н3ВО3 (борная кислота) обладает только кислотными свойствами. Гидроксиды галлия, индия и таллия диссоциируют преимущественно по основному типу, а для таллия известен гидроксид Т10Н, который является силь-ным основанием. [c.267]

    Приборы, материалы и реактивы спектро<1)Отометр ИКС-29, приставка многократного отражения, пластина монокристаллического кремния, полиэтиленовый поляризатор-реплика РПИ-3-01 жидкн "1 сплав индия с галлием, травитель СР-4. [c.155]

    Ковалентные нитриды и карбиды (бора и кремния), ионн о-к о в а-л е н т н ы е нитриды и карбиды (бериллия, алюминия, галлия, индия). Соединения BN, A1N, GaN, Si , В4С, В12С3 обладают высокой утойчивостью к действию воды, кислот и щелочей. Некоторые из них отличаются исключительной твердостью, например Si — карбид кремния, имеющий кристаллическую решетку типа алмаза и исключительную твердость. [c.243]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    В заключение укажем, что для специального легирования яолупроводниковых кристаллов применяются обычно элементы, атомы которых образуют примеси замещения. Так в кремний и германий р-типа вводят атомы бора, индия или галлия, а кремний и германий п-типа получают за счет легирования кристаллов примесью фосфора, сурьмы или мышьяка. [c.130]

    Размещая известные элементы в своей таблице, Д. И. Менделеев заметил, что в некоторых случаях оказывается невозможным поставить два элемента рядом, так как у них слишком большая разница в величине атомных масс. Пробелов в таблице было немало, например в четвертом ряду между бором с атомной массой И и иттрием с атомной массой 88, в пятом ряду между алюминием с атомной массой 27 и индием с атомной массой 114, а также между кремнием (28) и оловом (118). Неизвестные элементы, которые должны были занять эти места, Д. И. Менделеев назвал соответственно экабором, экаалюминием и акакремнием. [c.272]

    Описанные случаи типичны для элементов с близкой валентностью и неблагоприятными объемными факторами. В фазовых диаграммах таких систем, которые типичны для сплавов кремния и германия с другими элементами, обычно присутствуют простые эвтектики (см. рис. 8). Для примера рассмотрим две фазовые диаграммы полупроводниковых систем, имеющих исключительно большое значение для технологии получения образцов р- и п-тнпов германия, легированных сурьмой и индием. [c.142]

    Общая характеристика. Эти элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры (третье место — за кислородом и кремнием). Во внешнем электронном уровне их атомов по три электрона а в возбужденном состоянии Проявляют высшую валентность 111 Э2О3, Э(ОН)з, ЭС1з и т. д. Связи с тремя соседними атомами в соединениях типа ЭХд осуществляются за счет перекрывания трех гибридных облаков поэтому молекулы имеют плоское трехугольное строение, дипольный момент нуль. Из-за того, что в атомах галлия, индия и таллия предпоследний уровень содержит по 18 электронов, алюминия 8 и бора 2, нарушаются закономерные различия некоторых свойств при переходе от алюминия к галлию температур плавления элементарных веществ, радиусов атомов, энтальпий и свободных энергий образования оксидов, свойств гидроксидов и пр. (табл. 23). Таков же характер изменения различий при переходе от магния к цинку. [c.279]

    Карбиды. С углеродом индий не взаимодействует, и карбид индия до сих пор не получен. Но известен ряд тройных карбидов индия с никелем, кобальтом, титаном и другими металлами, как,например, 2г21пС [73]. Соединения индия с кремнием и бором не получены. [c.297]

    Важнейшие области применения. Основн 1Я область применения индия — производство полупроводников. Как к галлий, он является акцепторной примесью, сообщающей германию и кремнию дырочный тип проводимости. Поэтому применяется для создания п—р-переходов. Широкому его применению благоприятствуег то, что он легко смачивает поверхность германия и хорошо сплавляется с ним при низкой температуре. Фосфид, арсенид и антимонид, индия — полупроводники, представляющие большой практический интерес. В частности, антимонид индия обладает исключительно большой подвижностью электронов. Это соединение используется для изготовления датчиков эффекта Холла в приборах для измерения магнитных полей и инфракрас- [c.299]

    Извлечение из возгонов. Одни из основных видов индиевого сырья — пыли и возгоны. Несмотря на их различное происхождение,— это могут быть вельц-окислы, получающиеся при вельцева-нии отвальных цинковых кеков, раймовок, свинцовых шлаков, возгоны от фьюмингования свинцовых или медных шлаков, пыли от плавки свинцовых концентратов и т. д.,—для всех них характерно обогащение цинком, кадмием и свинцом, присутствующими в основном в виде окислов. Соответственно применяющиеся для их переработки методы имеют много общего, что позволяет нам рассматривать их совместно. Извлечение индия из возгонов затрудняется сложностью их состава. Так, вельц-окислы завода Электроцинк содержат 50% цинка, 20% свинца, 0,2% меди, 0,6% кадмия, 3% серы, 0,7% мышьяка, 2% железа, 3% двуокиси кремния, 0,3% хлора и т. д. Возгоны от фьюмингования медных шлаков завода Флин-Флон в Канаде содержат 70% цинка, 2% свинца, 0,2% меди, 1% мышьяка, 0,2% сурьмы, 1% железа, 1,5% двуокиси кремния и т. п. [95]. В то же время содержание индия в возгонах редко превышает 0,01%. [c.303]

    Благодаря высокой чувствительности активационный анализ находит широкое применение в разработке методов получения и контроля производства веществ высокой степени чистоты, так необходимых сейчас во многих областях науки и техники, в частности, в полупроводниковой промышленности. Особенно эффективным является активационное определение содержания в кремнии и германии ряда примесей, наличие которых оказывает существенное влияние на электрофизические характеристики полупроводников. К таким примесям относится, например, индий и сурьма. Как следует из табл. 13, радиоактивацион-иые методы определения этих элементов характеризуются исключительно высокой чувствительностью. [c.168]


Смотреть страницы где упоминается термин Кремния индия: [c.5]    [c.347]    [c.125]    [c.200]    [c.552]    [c.590]    [c.358]    [c.89]    [c.72]    [c.153]    [c.246]    [c.261]    [c.275]    [c.305]    [c.183]   
Аналитическая химия мышьяка (1976) -- [ c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Индий

Индит



© 2024 chem21.info Реклама на сайте