Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колонны гидродинамика

    Гидродинамические режимы в пленочных колоннах. Гидродинамика жидкой пленки, текущей по вертикальной стенке, достаточно подробно рассмотрена в гл. 6. Здесь же следует подчеркнуть, что пленочные противоточные колонны работают при скоростях газа, не превышающих скорости захлебывания. Начало захлебывания (подвисания) характеризуется резким возрастанием гидравлического сопротивления, а также количества находящейся в аппарате жидкости. При небольшом увеличении скорости газа аппарат начи- [c.55]


    Гидродинамика в. идеальном случае довольно проста. При диаметре колонны к и высоте колонны 2к толщина пленки жидкости [c.93]

    Дисковая колонна (рис. 21 и 22) предложена Стефенсом и Моррисом [26]. К сожалению, как гидродинамика на элементе, так и явления на соединенных дисках до сих пор не получили должного объяснения. Тем не менее, эти абсорберы очень удобны в работе и успешно использовались различными исследователями [27— 32] для изучения химической абсорбции в условиях, приближающихся к режиму быстрой реакции. Создается впечатление, что [c.95]

    ГИДРОДИНАМИКА ДИСПЕРСНЫХ ДВУХФАЗНЫХ ПОТОКОВ В КОЛОННЫХ АППАРАТАХ [c.58]

    В качестве уравнения движения может быть использовано уравнение (2.72), в котором эквивалентный диаметр частиц /д, а следовательно, и скорость Иоо и коэффициент сопротивления С будут переменными величинами. Для определения потока массы / из одной фазы в другую необходимо решить совместную задачу гидродинамики, массо- и теплообмена при движении частиц в колонном аппарате. Предположим, что скорости массообмена невелики и изменение размера частиц по высоте аппарата происходит достаточно медленно. Пусть — характерное расстояние этого изменения. Если характерное расстояние гидродинамической стабилизации частицы и, кроме того, Ну<Н, то ясно, что 100 [c.100]

    Изучение гидродинамики и массопередачи в насадочных абсорбционных колоннах. [c.279]

    Основные допущения принимается одна из следующих идеализированных моделей гидродинамики — идеального вытеснения или ячеечная коэффициент массопередачи постоянен по высоте колонны. [c.88]

    Значительную переработку претерпела четвертая часть, где рассмотрены аппараты для проведения процессов массопередачи. При анализе работы аппаратов широко использован метод математического моделирования. Систематизированы математические модели различных типов аппаратов. Расширены вопросы, связанные с оформлением новых методов проведения процессов массопередачи насадочные эмульгационные колонны и аппараты с внешним подводом энергии. Заново представлены обш,ие закономерности гидродинамики барботажного слоя, влияние структуры потоков на эффективность тарельчатых колонн. Дана оценка эффективности массопередачи на тарелках прн разделении многокомпонентных смесей, систематизированы математические модели тарельчатых ректификационных колонн. [c.4]

    Гидродинамика двухфазных систем в насадочных колоннах [c.383]

    Движение сплошной и дисперсной фаз в насадочных экстракционных колоннах обычно представляется моделями идеального вытеснения. Однако при помощи этих моделей многие явления не могут быть объяснены. Прежде всего это относится к процессу коалесценции и наличию статической удерживающей способности, которые влияют иа форму функции распределения частиц по времени пребывания в аппарате и потому должны учитываться при анализе и расчете гидродинамики процесса экстракции в насадочной колонне. Движение сплошной фазы удовлетворительно описывается диффузионной моделью [90—941. [c.420]


    Управляемость насадочного абсорбера по каналам гидродинамики и массообмена. Из гидродинамических каналов выделим два (как наиболее важные [54]) расход жидкости на входе Ь — перепад давления на всей колонне ДР (передаточная функция [c.425]

    Следует заметить, что этапу проектирования (выбора) технологической схемы предшествует этап конструирования высокоэффективного массообменного аппарата, который, в свою очередь, включает этап конструирования отдельного контактного устройства. Составными элементами этого этапа являются определение параметров математической модели гидродинамики всех типов контактных устройств, а также кинетики процесса массопередачи в зависимости от характера движения жидкости на тарелках колонны (прямоток, противоток и т. д.) и степени перемешивания парового (газового) потока - от идеального вытеснения до полного перемешивания. [c.13]

    Основу модели составляет алгоритм материального и теплового балансов колонны. При этом парожидкостное равновесие, кинетика массопередачи и гидродинамика потоков представля-к 1Т собой самостоятельные сложные задачи. Использование различных методов описания фазового равновесия, кинетики и гидродинамики приводит к изменению отдельных коэффициентов или зависимостей в балансовых соотношениях. Однако не изменяет общего алгоритма решения балансовых соотношений. Условия сходимости могут измениться, если вообще не нарушиться. Многообразные методы решения уравнений баланса свидетельствуют о трудностях разработки универсальных алгоритмов, которые гарантировали бы сходимость при различных способах описания отдельных явлений. [c.81]

    Расположение материала, принятое в первом издании, в основном сохранено. Дополнительно рассмотрены вопросы ректификации на пилотных установках (разд. 5.1.3.2). Содержанием раздела 4.2 в третьем издании является гидродинамика потоков в насадочных колоннах. Гл. 8 значительно сокращена ввиду того, что стандартные детали дистилляционных и ректификационных приборов и соответствующие контрольно-измерительные приборы уже нашли достаточно широкое применение в лабораторной практике. Таблицы, ранее приводившиеся в приложении, в третьем издании включены в текст. Литературные ссылки распределены по главам и дополнены новыми важнейшими работами в списки литературы включено по возможности больше обзорных статей. [c.11]

    Вопросы гидродинамики потоков в насадочных колоннах и в зернистых слоях подробно рассмотрел Барт [220], который, в частности, отметил, что насадочные тела с острыми кромками вызывают в два и три раза большее гидравлическое сопротивление по сравнению с насадочными телами округленной формы. [c.174]

    Шмелев Ю. С., Шабалин К. Н., Влияние геометрических параметров аппарата и насадки на массообмен и гидродинамику в насадочных колоннах, Хим. пром., № 9, 694 (1966). [c.588]

    В зависимости от способа организации контакта фаз колонные аппараты подразделяют на тарельчатые, насадочные и пленочные, а в зависимости от рабочего давления — на работающие под давлением, атмосферные и вакуумные. Около 60 % изготовляемых в СССР аппаратов для абсорбции и ректификации представляют собой тарельчатые колонны, остальные — насадочные колонны. Последние при правильной организации гидродинамики процесса часто более экономичны, чем тарельчатые. [c.69]

    Сравнительная простота конструкции барботажных колонн позволяет проектировать их на большие объемы, допускает установку антикоррозионной футеровки и гарантирует высокую надежность в эксплуатации. Характерным признаком работы барбо-тажной колонны являете неорганизованная и слабая циркуляция жидкости. Поэтому при анализе гидродинамики такого аппарата обычно считают, что газ барботирует через жидкость, не имеющую направленного движения. Слабая циркуляция не позволяет обрабатывать в барботажной колонне неоднородные жидкости (суспензии, эмульсии), состоящие из фаз с сильно отличающимися плотностями. [c.8]

    Гидродинамика в барботажных колоннах [c.47]

    Гидродинамика непрерывного противотока жидкость — жидкость была рассмотрена в гл. И. Там же обсуждался вопрос, какая из фаз должна разбрызгиваться, и исследовался процесс захлебывания колонн с насадкой в системе жидкость — жидкость. [c.590]

    Особенности моделирования колонных биореакторов заключаются в необходимости учета существенного влияния структуры жидкостных и газовых потоков на характер распределения концентраций микроорганизмов, субстрата и растворенного кислорода по высоте колонны. В целом математическая модель формируется согласно ранее рассмотренной схеме на рнс. 3.3 и включает следующие основные блоки гидродинамики, массообмена и кинетики. Конструктивное разнообразие колонных биореакторов обусловливает применение различных моделей структуры потоков, описывающих ситуацию, соответствующую либо режиму вытеснения, либо ячеечной схеме потоков, либо диффузионной модели [5, 19, 22]. [c.156]


    Для бг)лсе полного исчерпывания бутадиена-1,3 требуется несколько ступеней контакта газовой фазы с растворо.м катализатора, Д,1Я этой пели удобно использовать секционную барботажную колонну. Гидродинамика, массообмеи в барботажном с. к)е таких аппаратов довольно подробно изучена, нред.южены нескол1)Ко методов расчета промыш,ленной колонны, конструкция лабораторного реактора полного подобия [3, 4], [c.3]

    В предлагаемой вниманию читателей книге авторы сделали попьггку использовать современные достижения в области гидродинамики и массотеплообмена в дисперсных системах к разработке научно-обоснованных методов расчета колонных аппаратов. [c.3]

    Впервые взвешенный слой капель в распылительной колонне наблюдали Блендинг и Элджин [163]. Систематические исследования режима взвешенного слоя начались работами Летана и Кехата [156] и Лутати и Виня [133]. В дальнейшем гидродинамика распылительных колонн в режиме взвешенного слоя капель исследовалась также в работах [134, 164]. Движение пузырей во взвешенном слое наблюдалось в работе [165]. Отметим, однако, что существование взвешенного слоя пузырей возможно только в присутствии добавок поверхностно-активных веществ, затормаживающих процесс коалесценции. [c.95]

    Преимущество рассматриваемого типа абсорбера перед колонной с орошаемой стенкой заключается в том, что путь поверхности жидкости здесь достаточно короток, чтобы волнообразование отсутствовало без всякого специального добавления поверхностно-активных веществ. В то же время концевые эффекты малы, поскольку они ограничены лишь опорным стержнем и не оказывают воздействия на течение жидкости по основной поверхности. Анализ экспериментальных результатов достаточно прост, если растворяемый газ не взаимодействует в растворе (как рассмотрено выше) или вступает в мгновенную реакцию псевдопервого или псевдо-т-огр порядка [см. уравнение (111,17) или раздел П1-3-5], вследствие чего скорость абсорбции одинакова во всех точках поверхности. В других случаях анализ скорости абсорбции затруднен из-за сравнительной сложности гидродинамики потока по шаровой поверхности. Приближенное решение для умеренно быстрой реакции первого порядка было получено Дж. Астарита [c.87]

    Mashelkar R. А., Brit. hem. Eng., 15, 1297 (1970). Барботажные колонны (критический обзор литературы по гидродинамике, тепло- и массообмену в полых, насадочных п секционированных барботажных колоннах со сплошным слоем жидкости). [c.285]

    Тарельчатые аппараты широко применяются в промышленности. Особенно широкое распространение тарельчатые аппараты получили в качестве ректификацио нных и абсорбционных колонн. Огромный материал по гидродинамике и скорости процессов переноса в тарельчатых аппаратах, работающих в системе жидкость—газ, собран в книгах Кафарова [3] и Рамма [5]. [c.251]

    Гидродинамические условия в колонне с насадкой существенно отличаются от гидродинамики пустотелых колонных экстракторов. Зависят они прежде всего от смоченности насадки [1, 7, 8, 44, 48, 49]. Если сплошная жидкость лучше смачивает насадку, чем диспергированная, то поток будет иметь тот же характер, что и в колоннах без насадки, и вторая фаза будет протекать через колонну в виде капель, которые катятся по поверхности. Если жидкость, которая вводится через распылитель, обладает лучшей смачиваемостью, то такая жидкость образует на насадке либо сплошные, либо прерывистые пленки. В этом случае обе жидкости будут сплошными фазами. Измененные условия потока характеризуются, между прочим, тем, что массообмен не зависит тогда в широких пределах от количества стекающей по насадке жидкости и только незначительно зависит от скорости потока. Жидкость, которая вводится через распылитель, в этом случае называется условно диспергиро- [c.321]

    При перенесении результатов исследований кинетики для газожидкостных или многофазных жидкостных систем из статических интегральных или из дифференциальных реакторов на промышленные аппараты надо учитывать поправки на различие в газосодержа-нип, связанные со скоростями подъема пузырей или капель. Поскольку гидродинамика в лабораторных колонных реакторах резко отличается от таковой в промышленных аппаратах, применение интегральных проточных реакторов при исследовании кинетики большей частью не создает преимуществ перед статическими. [c.418]

    Кинетика массопередачи и гидродинамика потоков. Массопе-редача в многокомпонентных системах является одним из вопросов, которому уделяется, особенно в последнее десятилетие, огромное внимание [61—63]. И тем не менее до сих пор отсутствуют алгоритмы, позволившие бы перейти к точному расчету ректификационных колонн на основе кинетических представлений. При математическом описании межфазного массообмена движущую силу процесса принято выражать чзрэз разность концентраций, а кинетику — через коэффициент массопередачи [64]. [c.343]

    Гидродинамические характеристики точек инверсии для различных фязавых систем. Точка инверсии является наиболее характерной для описания гидродинамики насадочных колонн. При достижении точек инверсии массообмен резко возрастает, что значительно интенсифицирует процессы массопередачи. [c.390]

    Характерными особенностями современных исследований в области ректификации являются, во-первых, применение системного подхода и, во-вторых, рассмотрение ректификации как про- цесса разделения многокомпонентных смесей. Системный подход находит выражение в разработке алгоритмов расчета колонн со сложным взаимодействием потоков, комплексов колонн с замкнутыми материальными и тепловыми потоками, представлении процесса как совокупности явлений (парожидкостного равновесия, гидродинамики, тепломассопередачи и т. д.) со всей сложностью взаимосвязей между ними. Многокомпонентность разделяемых смесей приводит к необходимости разработки не только качественно новых экспериментальных методов, но и теоретических обос- [c.116]

    Аналитический синтез оптимального регулятора. Часто в таких процессах, как водная очистка синтез—газа от двуокиси углерода, очистка газов от аммиака, улавливание хвостовых газов и т. п., основное требование к промышленному абсорберу состоит в том, чтобы концентрация абсорбируемого компонента в газовой фазе на выходе из аппарата не превышала заданной величины у г/,д. Если входные возмущения по составу фаз таковы, что концентрация абсорбируемого компонента не выходит за допустимые границы на выходе из аппарата (что можно наблюдать особенно при больших плотностях орошения), а наиболее опасными являются возмущения по расходу газовой фазы, то сформулированный выше вывод относительно управляемости каналов насадочного абсорбера находит эффективную практическую реализацию. Действительно, сведем задачу регулирования выходной концентрации по каналу массообмена к эквивалентной задаче по каналу гидродинамики. При заданных нагрузках на аппарат и фиксированном диапазоне допустимых концентраций на выходе всегда можно рассчитать соответствующий этим условиям перепад давления на колонне ДРзд [55]. Пусть система регулирования выходной концентрации предусматривает функциональный блок, в задачу которого входит вычисление с каждым новым скачком по расходу газа того перепада давления, который соответствует новой нагрузке по газу и заданной концентрации на выходе. При этом задача регулирования состава газа на выходе из аппарата сводится к поиску такого управляющего воздействия по расходу жидкости Ь, которое после каждого нового скачка по расходу газа С приводило бы фактический перепад давления ДР к рассчитанному для новых условий перепаду давления ДРзд. [c.428]

    Как следует из материала рассмотренной главы, применение указанной методики позволило решить ряд важных практических задач в области расчета процессов, протекающих в химико-технологической аппаратуре. Так, развит прямой метод исследования гидродинамической структуры потоков в аппаратах на основе специфических свойств неустаповивпшхся течений жидкостей и газов в насадке и пористой среде установлен характерный для насадочных колонн гидродинамический эффект, проявляющийся в наличии экстремальной зависимости статической удерживающей способности от нагрузок по фазам на аппарат созданы методики и получены расчетные формулы для определения важнейпшх гидродинамических параметров структур потоков — коэффициентов продольного перемешивания, относительных объемов проточных и застойных зон, коэффициентов обмена между проточными и застойными зонами. Результаты исследования гидродинамической структуры потоков в насадке положены в основу анализа динамики процесса абсорбции в насадочных колоннах, оценки управляемости по каналам гидродинамики и массообмена и синтеза оптимального управления этими аппаратами. [c.433]

    Основой проведения расчетов системы разделения является математическое описание ее отдельных элементов - собственно колонны, кипятильников, дефлегматоров, подофевателей, промежуточных емкостей, насосов и т. д. Математическое описание процессов разделения включает балансовые соотношения, парожидкостное равновесие, кинетику массопередачи и гидродинамику потоков. [c.246]

    Изменение давления иногда сопровождается изменением физико-химических свойств разделяемой смеси, а также гидродинамики потоков жидкости и пара. Например, ири ректификации в кольцевом зазоре между вращающимся внутренним цилиндром и неподвижным внешним цилиндром применение вакуума приводит к ослаблению интенсивности или полному исчезновению вихрей Тейлора в паровой фазе, благоприятствующих массоиереносу. Затухание вихрей Тейлора происходит вследствие повышения кинематической вязкости паров. В итоге эффективность колонны заметно снижается (см. Шафрановский А. В., Ручинский В. Р. Теор. основы хим. технол. 1971, т. V, № 1 Олевский В. М., Ручинский В. Р. Роторно-пленочные тепло- и массообменные аппараты. М.. Химия, 1977. — Прим. ред. [c.84]

    Бляхман Л. И., Якубсон А. М., Гидродинамика колонн с затопленной насадкой. Теоретические основы хим. техн., 1, № 2, 252 (1967). [c.587]

    Колонны с провальными тарелками (рис. 13-11) по характеру гидродинамики потоков аналогичны насадочным колоннам, работающим в режиме подвиеания. На тарелках одновременно происходит барботаж газа или пара через слой жидкости и частичное провали-вание жидкости. Газ (пар) движется снизу вверх только через часть отверстий или щелей пульсирующим потоком. Распределение пропускающих газ или жидкость отверстий носит статистический характер, жидкость стенает с тарелки на тарелку в местах максимального статического давления. [c.327]

    Ро.зенбаум Г. Е., Бляхман Л. И. Гидродинамика колонн с насадкой из колец при режиме восходящего газожидкостного потока.— Теор. основы хим. технол. , 1971, т. 5, с. 757—759. [c.209]


Библиография для Колонны гидродинамика: [c.2]   
Смотреть страницы где упоминается термин Колонны гидродинамика: [c.94]    [c.361]    [c.242]    [c.478]    [c.2]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.104 , c.106 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамика



© 2025 chem21.info Реклама на сайте