Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели эмпирические

    Математические модели можно также классифицировать по математической основе, на которой они строятся. Так, существуют модели, основанные на явлениях переноса (в этой книге главным образом рассматриваются именно такие модели), эмпирические модели, основанные на экспериментально наблюдаемых зависимостях, и модели, основанные на балансе заполнения (типа только что отмеченной модели распределения времен пребывания). [c.114]


    Очевидно, что кинетическая модель эмпирического типа не допускает надежной экстраполяции за пределы допустимой области конкретного исследования. Поэтому наибольший интерес представляют кинетические модели, отражающие основные особенности механизма изучаемой реакции. Такие модели, которым в данной книге уделено главное внимание, в дальнейшем будем называть теоретическими моделями кинетики. [c.11]

    Существует несколько моделей, эмпирических схем для описания кинетики реакции сшивания термореактивных полимеров [46-48]. [c.232]

    Попытки применения теории подобия являются теперь пройденным этапом. Перспективный путь исследования и проектирования химических реакторов состоит в выборе и экспериментальной проверке модели процесса, определении входящих в эту модель эмпирических параметров с помощью лабораторных исследований кинетики, макрокинетики, гидродинамики процесса и решении систем уравнений, описывающих выбранную модель, с помощью электронно-вычислительной техники. [c.190]

    Описывая общую проблему построения наилучшей модели ряда последовательных реакций первого порядка, Петерсон [109] остроумно замечает, что для полного уяснения кинетики такой простой реакции первого порядка, как термическое разложение перекиси азота, потребовалось затратить целых двадцать пять лет и опубликовать около шестидесяти научных статей. Из этого явствует, что, хотя специалисты по моделированию любят рассуждать о теоретических моделях, противопоставляя их моделям эмпирическим, они нечасто могут похвастаться полным раскрытием законов, управляющих скоростями каждой реакции сложного химического процесса, пусть даже на том уровне, который считается ньше приемлемым в области кинетики. [c.229]

    Но возможен и другой подход. Если процесс очень сложен, расшифровка его механизма может оказаться нецелесообразной, требующей слишком большой затраты сил. В этих случаях желательно научиться управлять процессом эмпирически, без проникновения в теорию. Такой подход обычно называют эмпирическим или стохастическим, а соответствующие математические модели — эмпирическими или статистическими (поскольку при создании этих моде-.лей важнейшую роль играет математическая статистика). [c.118]

    Поверхность контакта фаз, зависящая от гидродинамики процесса, относится к управляемым переменным (например, расход газа и жидкости). Эти параметры в процессе эксплуатации могут изменяться в достаточно широких пределах, но их значения не должны выходить за пределы допустимых. По суш,е-ству, спроектировать массообменный процесс — это так организовать поверхность контакта фаз и управлять ею, чтобы обеспечить заданную степень извлечения целевых компонентов при изменяющихся условиях эксплуатации. Однако необходимо заметить, что пока не существует удовлетворительных ни физических, ни математических моделей, позволяющих надежно определять вклад конструктивных и гидродинамических факторов в организацию массообменной поверхности. И поэтому всякий раз приходится прибегать к сугубо эмпирическим методам. [c.56]


    Модель периодического процесса. Поскольку механизм процесса полимеризации на катализаторе Циглера — Натта неизвестен, а существующие предположения о механизме полимеризации изопрена не подтверждены измерением соответствующих ММР, единственный путь построения модели — эмпирические уравнения кинетики исчерпывания мономера по некоторой брутто-реакции и построение уравнений для косвенного контроля интегральных физико-механических характеристик качества (последнее подробно излагается в главе III). Используя приемы построения кинетического модуля в форме, инвариантной относительно начальных условий, получили уравнение (см. гл. II, с. 89)  [c.237]

    Рис. 3.7 и пример 3.7 демонстрируют (для линейных динамических моделей) связь между временной и частотной областями представления моделей. Эмпирические модели могут быть написаны в пространстве изображений по Лапласу или в частотной области и при этом не иметь во временной области эквивалентных моделей, построенных исходя из физических представлений. [c.190]

    С целью проверки соответствия структурной модели эмпирической зависимости (182) выразим из соотношений (186) и (189) значение параметра Рго,5- [c.250]

    Концептуальные модели стали следующим этапом в развитии моделирования их создание расширило возможности прогнозирования стока по сравнению с моделями эмпирическими. Однако параметры концептуальных моделей не всегда допускают ясную физическую интерпретацию. Например, к концептуальным относятся так называемые модели с сосредоточенными параметрами, в которых пространственные характеристики водосбора [c.17]

    Учет капиллярного скачка давления который задается в виде известной эмпирической функции насыщенностей равенством (9.4), приводит к модели следующего приближения, описываемой уравнениями Рапопорта-Лиса. [c.278]

    Когда мы не располагаем исчерпывающими сведениями об элементе процесса (неизвестна математическая модель процесса), значения /), . . ., по входному состоянию 8 рассчитать нельзя. Их можно определить эмпирическими методами по измерению технологических переменных выходного состояния 5 + . В этом случае говорят о комплексном регулируемом управлении (рис. 15-24, б). [c.352]

    Несмотря на то что для обоих эмпирических уравнений было найдено некоторое теоретическое обоснование, уравнение Лейдлера более точно соответствует модели Борна и поэтому более интересно. К сожалению, эти соотношения не могут быть успешно применены в случае других термодинамических свойств без значительного видоизменения, учитывающего электростатическое притяжение [48] в растворителе и диэлектрическое насыщение. В результате до сих пор не получена полная количественная картина ионных растворов. [c.462]

    Этот результат полностью соответствует важному эмпирическому правилу масштабирования аппаратов с мешалками, согласно которому, для достижения одинаковой степени диспергирования в геометрически подобных аппаратах расход мощности в расчете на единицу объема должен быть одинаков. Частота вращения мешалки в образце должна быть несколько меньше, чем в модели [см. уравнение (Х-21)]. [c.451]

    Масштабирование теплообменников. Моделирование теплообменников находит применение в тех случаях, когда отсутствуют эмпирические формулы для их расчета (сложные нетиповые аппараты) или когда неизвестны физико-химические данные, позволяющие вычислить коэффициенты теплообмена (редко встречающиеся вещества). Моделируя нетиповой аппарат для хорошо изученных систем, можно, в принципе, использовать в модели другое вещество, чем в образце. Когда неизвестны физико-химические свойства потоков, для которых проектируется аппарат большего масштаба, обязательно нужно применять одинаковые вещества в модели и образце. [c.452]

    В ряде работ [264-268] разрабатывались модели массопередачи в осциллирующую каплю. В расчетные формулы входят амплитуда и частота колебаний, которые должны быть определены экспериментально. Исследования по изучению закономерностей колебания капель при их движении систематически не проводились. В работе [269] авторы на основании обработки проведенных ими экспериментальных исследований и литературных данных по экстракции органических кислот, анилина и глицерина из воды бензолом, этилацетатом и нитробензолом получили эмпирическую формулу для расчета среднего по времени коэффициента массопередачи в переходной области размеров капель от 0,28 до 0,8 см (300 < <Ке<1100) ,  [c.193]

    Модель полной передаточной функции является наиболее подходящей для отображения опытных данных. Как показано на рис. 1Х-2, экспериментальное изучение функции отклика, проводимое методом частотных характеристик импульсным методом з или путем статистического анализа сведений о нормальной работе объекта всегда дает в результате эмпирическую математическую модель процесса, поскольку проверить все функции отклика аппарата на все возможные типы возмущений практически невозможно. [c.113]


    Так же как и в случае использования эмпирических выражений, результаты изложенных выше исследований нельзя непосредственно экстраполировать на другие виды оборудования или на другие условия. Они также совершенно непригодны для динамической оптимизации, поскольку большие трудности вызывает сильное изменение условий работы, например при пуске. Однако упомянутые методы могут оказаться весьма полезными при стабилизации управления очень крупными колоннами, где вследствие их размеров полные модели были бы практически неприемлемы. [c.116]

    Машинную технику можно применять для уточнения предварительных и неполных теоретических моделей в целях достижения лучшего отображения. Эту возможность, в частности, следует использовать, чтобы попытаться осуществить серьезные исследования известных, но неправильных моделей. Затем нужно применить методы проб и эмпирические корреляции и определить, как хорошо вычислительная машина может провести выбор между предварительной моделью и точной. [c.186]

    Геометрическая модель. После того как было исследовано большое число молекулярных кристаллов, появились обобщения и были сделаны выводы [1]. Интересное наблюдение состоит в том, что в молекулярном кристалле между молекулами имеются характеристические кратчайшие расстояния. Межмолекулярные расстояния для взаимодействий данного типа практически постоянны. На основе этого для описания молекулярных кристаллов была построена геометрическая модель. Сначала были найдены кратчайшие межмолекулярные расстояния, затем постулированы так называемые межмолекулярные атомные радиусы . Используя эти значения, стали строить пространственные модели молекул. При подгонке этих моделей эмпирически находили плотнейшую упаковку. Была даже построена простая установка для подгонки молекулярных моделей. Пример упаковки приведен на рис. 9-44, а. Молекулы упаковываются таким образом, чтобы пустое пространство между ними было минимально. В вогнутую часть одной молекулы вставляется выпуклая часть другой. Примером служит упаковка молекул в кристаллической структуре 1,3,5-трифенилбензола. Если затушевать площади, занимаемые молекулами, получится характерный восточный орнамент [44], изображенный на рис. 9-44,6. Комплементар- [c.455]

    Предложена оптимальная структура октамера, содержащая 9 очень мало искривленных водородных связей [382]. Была использована поляризационная модель и эмпирические потенциальные функции. Удивительно, что ни эти, ни другие авторы (кроме [383]) не рассматривали кубическую структуру октамера, содержащую 12 водородных связей. [c.135]

    Таким образом, складывалась весьма запутанная и противоречивая ситуация эксперимент говорил в пользу планетарной (ядерной) модели атома, тогда как согласно известным физическим законам такой атом существовать не мог. Выход был найден Н. Бором, теория которого опиралась на модель атома, предложенную Резерфордом, эмпирически установленные закономерности в атомных спектрах и гипотезу М. Планка. На последней надо остановиться особо. [c.7]

    Сообщалось [27] о других параметрах, которые можно использовать в случае соединений олова. Этот подход с большим успехом был использован для многих других систем [27, 28]. Очевидно, в модели точечного заряда имеются сомнительные места [29], но требуется провести больше работ, чтобы можно было сказать, когда ее нельзя использовать эмпирически. [c.307]

    В частности, пр 1 отсутствии или весьма ограниченном объеме теоретических сведений о моделируемом объекте, когда неизвестен даже ориентировочный вид соотношений, описывающих его свойства, уравнения математического описания могут представлять собой систему эмпирических зависимостей, полученных в результате статистического обследования действующего объекта. Эти модели обычно называются статистическими и имек1Т вид корреляционных или регрессионных соотношений между входными и выходными параметрами объекта. Вывод указанных соотношений возможен лишь при наличии действующего объекта, который допускает выполнение определенного объема экспериментальных исследований. Помимо этого, недостатком таких моделей является относитгльная узость области изменения их параметров, расншрение которой связано с серьезным усложнением зависимостей. Разумеется, под,обные модели в структуре уравнений не отражают физических свойств об1.екта моделирования, что затрудняет обобщение результатов, получаемых при их применении, [c.47]

    Имеются многочисленные эмпирические корреляции и модельные теории самодиффузии газов и других низкомолекулярных веществ в конденсированной фазе выделим три модель- [c.76]

    Эта процедура может выявить сверхпараметризацию, т. е. из информации, предоставленной конкретной серией данных, требуется определить слишком много параметров. В таком случае при калибровке может быть получен хороший результат, но он не выдержит верификации. На самом деле большинство моделей эмпирически недоопределены сериями данных, поскольку используемые на практике данные содержат недостаточно информации. [c.438]

    Аналогичные замечания можно сделать также относительно более простых моделей — эмпирических. В дальнейшем ограничимся анализом особенностеп расчета теоретических моделей. [c.135]

    Между тем процессы, определяющие структуру вязкого подслоя, не исчерпываются одной лишь нестационарностью. В первую очередь, здесь необходимо отметить глубокую связь между пульсационными полями скорости и давления, прямо следующую из уравнения (16,3). Столь же существенное значение имеют конве15тивные члены, входящие в систему (16.2), а также трехмерность пульса-циоииого движения в подслое. Непосредственное сравнение системы (16.2) с уравнением (16.4) показывает, что этими важными факторами обычно пренебрегают. Естественно, поэтому, что согласие упрощенных теорий с непрерывно растущим объемом накопленного эмпирического материала удается получить лишь за счет увеличения числа подгоночных параметров, вводимых в теоретические модели. На таком пути создания теории массопередачн можно в лучшем случае более или менее удачно описать имеющийся экспериментальный материал, по уж, по-вндимому, никак нельзя теоретически предсказать новые стороны изучаемого процесса. [c.176]

    Умелое использование теоретических и эмпирических моделей необходимо для создания практически управляемого производства и отработки эксплуатационных режимов. А одели позволяют также исследовать переходные состояния пуск произ-водсгва, переход иа другой режим и остановка производства и т. п. [c.235]

    Другой разрабатываемый подход к построению эмпирических функций модели трехфазной фильтрации связан с использованием теории перколяции. Но практические результаты на этом перспективном пути еще не достигнуты. [c.289]

    Стирн и Эйринг [8], исходя из модели переходного комплекса, попытались подсчитать значение для реакций, большинство из которых идет с участием ионов. Хотя во многих случаях получено очень хорошее согласие с опытом, для стадий, в которых происходит изменение общего числа зарядов, это следует рассматривать лишь как случайное наложение ошибок . Лейдлер [29] попытался предсказать для реакций, включающих общее изменение заряда ионов, путем использования эмпирической формулы для частичного молярного объема ионов в водных растворах. Этот метод приемлем как чисто качественный, количественно же он может давать расхождения в два раза. [c.442]

    Учитывая, что исходное сырье представляет собой сложную систему как в химическом, так и в физическом отношении, а все основные и побочные реакции протекают на поверхности полидисперсных катализаторов в условиях нарастающей дезактивации, исследование проблем кинетики процессов каталитического гидрооблагораживання остатков строится на двух уровнях теоретических представлений. На первом уровне не учитывается гетерогенность протекания процесса, т. е. используются формальные подходы гомогенного катализа, основанные на различных эмпирических моделях, описывающих формальную кинетику основных реакций [55]. На втором уровне используются макро-кинетические методы гетерогенного катализа с учетом закономерностей диффузионных процессов, протекающих на зерне и в порах катализатора и использующих математические модели, связьшающие материальные балансы изменения концентраций реагентов с диффузионными характеристиками зерна и сырья, объединенные известными приемами. диффузионной кинетики [27]. [c.70]

    Для достижения таких эффектов необходимо умело сочетать эмпирические исследования с современными математическими методами, позволяющими определить оптимальный вариант технологического процесса в наикратчайшеё время и при разумном риске. В течение последних лет для этой цели разработаны прогрессивные методы, использующие достижения математики и технической кибернетики, — так называемая стратегия разработки систем, или системотехника. Как и при использовании метода масштабирования, в этом случае также составляется математическая модель, но она описывает весь технологический процесс (или наиболее важную его часть) как систему взаимосвязанных элементов. Модель, в которой ряд величин и зависимостей экстраполируется с объекта меньшего масштаба, вносит в проектные расчеты фактор ненадежности. Системотехника включает также способы оценки надежности и принятия оптимальных решений при проектировании в определенных условиях. Важным преимуществом комплексного математического описания процесса является, возможность определения оптимальных рабочих параметров не для отдельных аппаратов, а для всей технологической цепочки как единого целого. Подробное описание математических методов оптимизации, оценки надежности и теории решений выходит за рамки данной книги, поэтому мы вынуждены рекомендовать читателю специальную литературу (см. список в конце книги). Ниже будут рассмотрены основные понятия, применяемые в системотехнике, и принципы разработки систем, а также их моделей. [c.473]

    Модель дает неплохое совпадение с экспериментом. Тем не менее, как отмечено в работе [87], принятые авторами [77] условия отрыва не вьшолняются при низких и высоких скоростях образования капли. Авторы [87] предложили модель, в которой рассматривается также двухстадийный процесс образования каш1и. Однако объем капли в конце первой стадии определяется из баланса не только сил тяжести и поверхностного натяжения, но также силы сопротивления и силы динамического давления жидкости. Для определения времени отрыва используется найденная из эксперимента и представленная в виде корреляционного соотношения скорость центра капли в момент отрьша. Модель проверена в широком диапазоне изменения параметров и дает удовлетворительное совпадение с экспериментом. Существенным недостатком является то, что формулы, по которым проводятся вычисления, слишком громоздки. Подводя итог сказанному, отметим, что в настоящее время трудно рекомендовать надежный и удобный метод расчета отрывного объема капель в динамическом режиме, основываясь только на полуэмпирических моделях. Для проведения инженерных расчетов можно использовать эмпирические корреляции. Одна из таких корреляций рекомендована в работе [84]. [c.57]

    Исследованию и расчету колонных химических реакторов и процессам абсорбции и десорбции в колонных аппаратах посвящена об-щирная литература. Больщинсгво работ относится к экспериментальному изучению конкретных систем и получению эмпирических формул дпя расчета аппаратов. В ряде работ применяются пленочная и пенетрационная модели массопередачи с химическими реакциями, изложенные в гл. 6. Поскольку, однако, эти модели разработаны для случая постоянства концентрации хемосорбента и абсорбтива (экстрактива) в сплошной и дисперсной фазах, их применение дпя расчета прямо- и противоточных аппаратов затруднено. Обычно при расчете колонных аппаратов полагают, что коэффициент ускорения массообмена вследствие протекання химических реакций постоянен по высоте колонны. Это допущение может привести в ряде случаев к существенным ошибкам. [c.286]

    Продольное переметивaiHiHe в распылительной ко.лоине диаметром 38 мм и длиной 1,0 м изучали [212] на системе вода (сплошная фаза)—метилизобутилкетон (дисперсная фаза). Средняя удерживающая способность по дисперсной фазе (УС) была на уровне 0,04. Исследование проводили методом ступенчатого ввода трассера в сплошную фазу кривые отклика интерпретировали на основе диффузионной модели. Влияния скорости дисперсной фазы на коэффициент продольного перемешивания сплошной фазы Еи.с не было обнаружено для его определения предложено эмпирическое уравнение [c.202]

    Естественно, чем точнее модель, тем ближе она к действительности, однако стремление полнее учитывать сложную природу гетерогенных реакций и механизм взаимодействия явлений различного происхождения закономерно приводит к слишком сложным уравнениям, содержащим большое количество неопределенных параметров. При этом модель теряет практическую ценность. Если промышленный процесс протекает по сложному и мало изученному механизму, проще подобрать и использовать простые эмпирические корреляции. Иными словами, приходится пользоваться принципом бритвы Оккама , согласно которому отбрасывается или отрезается все, усложняющее сущность ,, например лишние гипотезы и усложнения в объяснении наблюдений и опытов. Это означает, что математические модели не должны быть сложные, чем это необходимо для объяснения фактов, и не должны противоречить твердо установленным теоретическим положениям. [c.17]

    Можно отметить, что экспфиментальные результаты неизменно ближе к величине 2,0023, чем величины, предсказываемые теорией кристаллического поля. Расхождение может быть устранено путем придания эмпирического эффективного значения параметрам или X, для того чтобы согласовать рассчитанную величину д с экспфиментальной. Тогда степень отклонения результатов простой модели кристаллического поля определяется отношением X (комплекс)Д (газообразный ион). Увеличение ковалентности связывания в комплексе должно вызывать уменьшение этого отношения. В теории поля лигандов берут (или ) и Р из величин для свободного иона. Пониженные величины часто интерпретируют в терминах ковалентных эффектов (см. ниже). [c.229]


Смотреть страницы где упоминается термин Модели эмпирические: [c.235]    [c.245]    [c.28]    [c.239]    [c.442]    [c.74]    [c.114]    [c.252]    [c.345]    [c.46]    [c.348]   
Организация исследований в химической промышленности (1974) -- [ c.38 , c.223 , c.228 , c.229 , c.234 , c.289 ]




ПОИСК







© 2025 chem21.info Реклама на сайте