Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптимизация процессов, реактор без перемешивания

    Пример 21. Оптимизация реактора идеального перемешивания. Математическая модель исследуемого процесса известна (VI.5). Для частного случая, ког- [c.253]

    При решении задач оптимизации на современном научно-техническом уровне реактор химического производства уже нельзя рассматривать изолированно, вне связи с системой автоматического управления, поскольку автоматизация открывает широкие возможности и дает совершенно новые, наиболее эффективные решения по оптимизации химических процессов. С этих позиций и освещаются в данной главе вопросы оптимизации экзотермических процессов (которые представляют наибольшую трудность в аппаратурном оформлении) применительно к реакторам с перемешиванием в объеме и без перемешивания в направлении потока. [c.191]


    Оценка параметров диффузионной модели в аппаратах с переменным продольным перемешиванием. При исследовании колонных аппаратов обычно определяют усредненный коэффициент продольного перемешивания, хотя в реальных условиях он может быть различным на разных участках. Это может быть вызвано непостоянством структуры потоков по высоте аппарата и их физических свойств, местными нарушениями этой структуры. Обычная диффузионная модель в этих случаях недостаточно точно отражает физическую сущность процесса. Это особенно важно при оптимизации и проектировании тепло-, массообменных аппаратов, химических реакторов, когда необходимо выявить участки с наихудшей для проведения процесса гидродинамической обстановкой. Для этого нужно определить параметры продольного перемешивания Ре на отдельных участках аппарата. [c.97]

    В химической технологии при оптимизации сложных процессов химического превращения вещества, с целью достижения наилучшего распределения продуктов реакции и обеспечения максимального выхода целевого продукта, исходят из анализа гидродинамической обстановки в реакторе. Гидродинамический режим движения характеризует перемешивание реагирующих веществ в аппарате (в зоне реакции) и в значительной мере определяет избирательность протекания как простого, так и сложного процесса химического превращения вещества. При этом движение потоков взаимодействующих веществ в реакторе должно быть организовано таким образом, чтобы обеспечивалась максимальная производительность аппарата по целевому продукту, а режим ведения химического процесса должен быть таким, чтобы скорость побочных реакций, а следовательно, и выходы их были минимальными. Для этого в случае протекания в реакторе параллельных реакций необходимо уменьшать или увеличивать концентрации исходных веществ в реакционном объеме (в зависимости от порядка реакции), а в случае последовательных реакций — избегать перемешивания реакционных смесей, имеющих разный состав продуктов реакции. [c.12]

    Указанное выше третье условие оптимизации процесса растворения железных стружек может быть выполнено с помощью известных механических способов интенсификации перемешивания жидкости увеличением скорости движения жидкости, барботированием ее воздухом, вибрацией слоя железных стружек, пульсацией потока. Из перечисленных способов наиболее перспективным является пульсация потока, т. е. возвратнопоступательное движение жидкости в реакторе. Колебательное движение потока, скорость которого в несколько раз превышает линейную, создает в реакторе режим свободной развитой турбулентности, что интенсифицирует массообменные процессы растворения железных стружек и улучшает работу устройства в целом. [c.63]


    Если доля обрыва цепей на поверхности пренебрежимо мала или если поверхность благоприятствует протеканию процесса в нужном направлении (инициирует радикалы, разлагает побочные нестабильные промежуточные продукты и т. п.), то здесь интенсификация теплоотвода и оптимизация реакции достигается максимальным усилением перемешивания и особых проблем не возникает. Иначе обстоит дело при вредном влиянии поверхности за счет обрыва цепей или разложения активных промежуточных продуктов. Тогда направления интенсификации теплообмена и повышения скорости и (или) селективности реакции противоположны. Эту противоположность нельзя обычно устранить каким-либо покрытием поверхности, поскольку, как правило, неактивные в химическом плане поверхности (фосфорные, борные или силикатные эмали) мало теплопроводны. Кроме того, часто вообще не удается подобрать инертное покрытие. В таком случае задачу надо решать расчетом, подбирая решение, оптимальное в химическом или экономическом смысле. Основой такого решения будет математическая модель реактора, представляющая собой систему кинетических уравнений вида (2.5), дополненную уравнениями гибели радикалов на стенке и (или) разложения на стенке кинетических промежуточных продуктов реакции. Без уточнения механизма реакции такую систему с учетом принципа Боденштейна для проточных аппаратов полного смешения (более частый [c.103]

    Применительно к многофазным жидкостным реакторам (МЖР) задача определения оптимального профиля температуры значительно осложняется. Сравнительно высокая теплоемкость реакционной жидкой фазы и наличие продольного перемешивания сглаживают температурный градиент. Кроме того, необходимо учитывать влияние температуры на раснределение компонентов между фазами. Вообще в случае МЖР оптимизация процесса путем создания определенного профиля температур не получила еще такого распространения, как в случае гетерогенно-каталитических процессов, п эта задача нами подробно не рассматривается. [c.171]

    В реакторе интенсивного перемешивания величина модуля водорода не является столь критической более того, слишком большой модуль газа может даже снизить интенсивность перемешивания. Однако в проточных условиях и в этом случае необходим некоторый минимальный избыток водорода сверх потребляемого для реакции и растворимого в жидкости. Роль его состоит в удалении выделяющихся побочных газообразных продуктов (метан, углекислый газ и др.) без существенного снижения парциального давления водорода. Величина модуля избыточного водорода может в этом случае колебаться от очень малой (0,25) [23] до значительной (4—5), в зависимости от конструкции реактора и других факторов, и должна определяться при экспериментальной оптимизации процесса известными методами [35]. [c.126]

    На практике встречаются такие процессы, для которых при стационарных условиях подачи сырья и в условиях стабилизации управляемых параметров макрокинетика определяется не только концентрацией реагентов, но и временем, которое они провели в зоне реакции. Сюда относятся некоторые биохимические реакции с изменением свойств реагентов в зависимости от возраста [12]. Эти процессы будем называть процессами с нестационарной кинетикой. Знание характера нестационарной зависимости позволяет оценить ее влияние на технологические и конструктивные параметры и несет существенную информацию для составления математического описания процессов и рещения вопросов оптимизации [13]. Нестационарность процессов учитывается путем введения в кинетическое уравнение переменного зо времени коэффициента неста-ционарности реакции, который определяется по результатам экспериментов, поставленных в реакторах идеального перемешивания периодического или непрерывного действия. Предполагается, что предварительными исследованиями установлено существование для рассматриваемого процесса математического описания вида  [c.275]

    Следует отметить, что при значительных отклонениях реального и идеального реакторов возможно изменение структуры уравнений, описывающих процесс ((например, проточный реактор вытеснения можно представить как каскад идеальных реакторов перемешивания). Более убедительным, однако, является внесение конструктивных изменений (2) с целью улучшения гидродинамического режима реактора и далее оптимизации реактора с хорошими гидродинамическими характеристиками, [c.33]

    Пусть, например, первым реактором каскада служит аппарат с перемешиванием в объеме и в качестве второго реактора используется аппарат, в котором процесс протекает без перемешивания в направлении потока. В этом случае каскад реакторов различных типов можно с успехом применить при решении задачи по оптимизации аппаратурно-технологического оформления химических процессов (см. главу VII). [c.103]

    Из рассмотрения вопроса об оптимизации аппаратурно-технологического оформления химических процессов в результате автоматизации, вытекает, что при относительно небольшой степени превращения основного реагирующего вещества в экзотермическом процессе предпочтение следует отдавать аппаратурному оформлению в виде реактора с перемешиванием в объеме, если, конечно, это не вызывает каких-либо технических трудностей или ухудшения технологических показателей процесса. [c.197]


    Современные плазмохимические процессы (и, в частности, ряд многотоннажных промышленных процессов) организуются, как правило, таким образом, что потоки плазмы и сырья вводятся в плазмохимический реактор раздельно [1—3]. Для того чтобы достигнуть желаемого результата — провести в реакторе химическую реакцию, необходимо прежде всего перемешать сырье с плазмой. При этом по самой суш,ности химршеской реакции требуется, чтобы молекулы реагентов находились в непосредственном контакте. Это означает, что сырье должно быть перемешано с плазмой до молекулярных масштабов независимо от того, является ли плазма реагентом или только энергоносителем, поскольку перенос энергии от частиц плазмы к молекулам реагента происходит также на молекулярном уровне. Одной из характерных особенностей плазмохимической технологии является использование весьма высоких температур — от2-10 до (10—15)-10 °К. При таких температурах скорости химических реакций возрастают настолько, что характерные времена этих реакций становятся сравнимыми с характерными временами процессов переноса. Поэтому в процессе перемешивания реагента с плазмой, характерное время которого становится сравнимым по величине с характерным временем химических реакций, реагент может испытывать значительное превраш,ение. Для сокращения времени перемешивания последнее производят в условиях интенсивной турбулентности. Однако и в этих условиях время перемешивания остается еще достаточно большим для того, чтобы реагент в процессе перемешивания испытывал заметное превращение. При расчетах, моделировании и оптимизации плазмохимического реактора необходимо учитывать степень этого превращения, которая определяется геометрическими и гидродинамическими особенностями реактора-смесрхтеля. Следовательно, возникает необходимость рассчитывать степень превращения данного реагента в процессе его турбулентного перемешивания с плазмой в условиях, когда характерные времена химического превращения и физического процесса турбулентного перемешивания сравнимы по величине между собой. Эта задача неновая и возникает всякий раз, когда приходигся иметь дело с быстрыми и очень быстрыми химическими реакциями, нанример при расчете процессов горения в турбулентных потоках, определении параметров баллистических следов, остающихся за телами, перемещающимися с большими скоростями в газах и жидкостях, и определении констант скоростей биохимических реакций в растворах [4, 5]. [c.198]

    Анализ был также распространен иа реактор с неподвиж-ным слоем, подверженным дезактивации, при использовании того же режима. Предполагалось равномерное отравление при изотермических условиях в отсутствие осевого перемешивания. Были рассчитаны режимы, обеспечивающие равномерную активность катализатора, которые являются оптимальными для неподвижного слоя. Эти режимы зависят только от стоимости катализатора, модуля Тиле для зерна, безразмерного времени и отношения 6/тр. Хотя этот метод оптимального проведения процесса, вероятно, трудно практически реализовать, интересно наблюдать, что изменение в распределении активного материала может вести к улучшению характеристики процесса. Важным фактором в расчете проведения процесса в реакторе с неподвижным слоем, работающим в условиях дезактивации, является оптимизация времени пробега. Чем ниже значение этого времени, тем больше частота регенерации и больше стоимость проведения операции. В последовательных реакциях типа [c.200]

    При моделировании, расчете и оптимизации работы реакторов стремятся применить идеальные гидродинамические модели полного омешения или идеалыного вытеснения (ом. с. 283). Для реакторов со стационарным (фильтрующим) слоем катализатора во многих случаях применима модель идеального вытеснения при адиабатическом или политермическом температурном режиме. Для описания каталитических процессов в аппаратах КС непригодны идеальные модели смешения и вытеснения. Наличие газовых пустот (пузырей) в слое катализатора и перемешивание газа и твердых частиц усложняют протекание химических процессов. Это обстоятельство находит отражение в математических моделях реакторов для таких систем, называемых двухфазными. Особенностями таких моделей является то, что реакция не протекает в зоне пузырей, а изменение концентрации реагирующих веществ происходит за счет массообмена с плотной частью слоя. В настоящее время для расчета реакторов КС широко используется так называемая пузырчатая модель, которая была исследована на процессе окисления 50г и дала хорошую сходимость с экспериментом в варианте, когда в плотной части слоя происходит полное смешение. В связи с этим можно рекомендовать эту модель для расчета и оптимизации каталитических реакторов КС окисления 50г в первой ступенп контактирования системы ДК/ДА, при этом слои катализатора изотермичны по высоте. Расчет высот слоев катализатора сводится к решению системы уравнений  [c.266]

    Адсорбция целЛюлаз на целлюлозосодержащем сырье для ферментов из нескольких микробных источников оказалась настолько прочна (при соответствующей оптимизации условий адсорбции), что позволила применять противоточный реактор колонного типа для масштабирования процесса. При этом максимальная концентрация глюкозы на выходе из реактора составляла 12—15%, но объемная продуктивность была довольно низкой в результате ингибирования продуктами гидролиза (глюкозой и целлобиозой) и не превышала 1,0 г/л-ч. Более высокая продуктивность, до 3 г/л-ч, наблюдалась при концентрации 2—5% глюкозы в сиропе. Математическое моделирование действия данного реактора показывает, что его продуктивность может достичь 7—9 г/л>ч, в то время как реактора перемешивания — только 1,5—1,6 г/л-ч. Если целлюлозу полностью перевести в аморфное состояние, то производительность противоточного колонного реактора, как показывают расчеты, может достичь 12—15 г/л-ч (реактора перемешивания— 3—4 г/л-ч). Если, наконец, повысить содержание аморфной целлюлозы в колонном реакторе до 40%, то его производительность может достичь 18—20 г/л-ч (А. В. Гусаков, А. П. Синицын, 1985). В принципе эти показатели могут быть еще более увеличены при переходе к целлюлазам, менее подверженным ингибированию продуктами гидролиза целлюлозы, а также к более термостабильным целлюлазам, позволяющим дополнительно ускорить процесс при более высокой температуре (60—70°) и перейти к условиям гидролиза с меньшей вероятностью инфицирования посторонней микрофлорой. [c.42]

    Работой [23] и рядом последующих исследований по гидроге-нолнзу глюкозы на той же установке, которые будут рассмотрены ниже при обсуждении вопроса об оптимизации режима гидрогено-лиза, была доказана возможность получения в проточных условиях с реактором интенсивного перемешивания гидрогенизата, содержащего более 40% глицерина. При этом время контакта в реакторе снижено до 30 мин, а после оптимизации режима — и до 20 мин за счет исключения внешнедиффузионного торможения процесса. [c.110]

    С использованием этого метода проводился синтез оптимальной схемы процесса, в состав которого входили два реактора полного перемешивания и две простые ректификационные колонны [13]. В данном случае исследователи не столкнулись с какими-либо трудностями как расчетного, так и общего характера. При большем числе переменных было предложено использовать метод прямой оптимизациии в сочетании с ранее разработанным методом декомпозиции [31]. К общим недостаткам методов прямой оптимизации следует отнести прежде всего то, что все дискретные переменные рассматриваются как непрерывные и возникает проблема соответствия получаемого оптимального решения дискретной природе процесса. В связи с этим следует отметить, что обобщение результатов полученного таким образом решения на целочисленные переменные может привести к неоптимальному решению задачи в целом и, кроме того, возникает большая вероятность определения локальных оптимумов для основных проектных и режимных переменных в пределах неоптимальной структуры [9, 13]. Если учесть также трудности, связанные с разработкой схемы, включающей в себя все возможные структурные связи между элементами системы, то использование методов прямой оптимизации ограничивается задачами синтеза систем очень малой размерности и не имеет практически никаких преимуществ перед другими методами синтеза. [c.10]

    Усовершенствование промышленных процессов. Основные направления усовершенствования промышленных процессов алкилирования касаются создания новых катализаторов, подготовки сырья, совершенствования аппаратуры и оборудования, я тякжр оптимизации технологического режима. При прочих равных условиях высокая начальная мощность перемешивания на единицу объема реактора-контактора продолжает оставаться основным фактором процесса. Этот фактор становится особенно важным, если невозможно увеличивать интенсивность перемешивания. [c.368]


Смотреть страницы где упоминается термин Оптимизация процессов, реактор без перемешивания: [c.151]   
Химические реакторы как объекты математического моделирования (1967) -- [ c.196 , c.197 ]

Химические реакторы как объект математического моделирования (1967) -- [ c.196 , c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Оптимизация процессов

Оптимизация процессов оптимизация

Оптимизация процессов, реактор

Процесс реакторов

Процесс с перемешиванием

Реактор без перемешивания

Реактор оптимизация



© 2025 chem21.info Реклама на сайте