Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Шульца распределение по степеням

    В настоящее время уже можно назвать несколько гомологических рядов биополимеров, где должно удовлетворяться последнее неравенство. Б какой степени отличается от М , т. е. в какой мере незаконна подмена одного среднего веса другим, уже нельзя решить в общем виде. Соответствующую оценку, которая является вполне типичной, мы произведем для распределения Шульца, удобного тем, что его моменты любого порядка элементарным образом выражаются через гамма-функции. Аналогичным образом оценка может быть произведена и для других типов распределений. Момент порядка д распределения Шульца (1. 38)  [c.80]


    В том случае, когда нет надежных данных по абсолютным величинам молекулярных весов фракций, для обработки данных фракционирования можно применить менее точный метод Шульца. Буз и Бизон [19] расчетным путем показали, что ошибки при определении молекулярных весов фракций в сильнейшей степени влияют на результаты, полученные методом Билла. Эти авторы показали также, что возражения относительно нрименения метода Шульца не столь серьезны, как полагают некоторые исследователи. Недавно проведенные расчеты [12], основанные на соотношении Флори — Хаггинса для растворимости полимера (как, и работы Буза и Бизона, но с более высокой степенью точности), показали, что вполне удовлетворительные результаты получаются методом Шульца, если фракции обладают распределением с довольно резким максимумом. На рис. 13-13 кривая соответствует [c.354]

    Построенные теоретические дифференциальные кривые МВР для распределения Шульца находятся в хорошем согласии с экспериментальными дифференциальными кривыми (рис. 2). Кроме того, о рекомбинационном механизме можно качественно судить и по резкому возрастанию молекулярного веса со степенью превращения (рис. 1) при одновременном сужении МВР, так как обычный рост разветвленных макромолекул приводит к значительному расширению МВР (см., например, [5]). Появление геля на последних стадиях превращения, возможно объясняется межцепными реакциями, когда стерические факторы и характер распределения катализатора по активным концам могут ограничить обычную рекомбинацию растущих цепей. [c.53]

    Если средние значения Л4 и М . для молекулярного веса или степени полимеризации какого-либо высокомолекулярного вещества могут быть определены без установления функции распределения, например, для производных целлюлозы — путем измерения значений А/,, методом осмотического давления, а — из вискозиметрических данных (для этих веществ соблюдается уравнение Штаудингера в широком интервале молекулярных весов), то только для монодисперсных полимеров Р ,= Р . Для полидисперсных веществ всегда Если определить, согласно Шульцу, не- [c.139]

    Характер кривых ММР поликапроамида в значительной степени зависит от числа фракций, взятых для анализа [52]. При увеличении этого числа до 33—63 полидисперсность поликапроамида как с блокированными, так и с неблокированными концевыми группами приближается к ожидаемой по теории Флори—Шульца. В этой связи интересно сопоставление с изменением молекулярномассового распределения расплавленного поликапроамида, полученного по анионному способу полимеризации. В последнем случае сразу же, по завершении процесса конверсии капролактама образуется полимер с очень широким ММР, а после выдерживания расплава 3—4 ч распределение становится очень узким и затем спустя еще 2—3 ч оно достигает величины, ожидаемой по теории Флори— Шульца. Причиной такого значительного изменения характера ММР является деструкция поликапроамида под влиянием катализаторов анионной полимеризации. Полимер становится стабильным только через 4—6 ч, когда катализатор почти полностью инактивируется. [c.34]


    Функции, которые показывают, сколько содержится граммов (гпр) для степени полимеризации Р в I г смеси, Шульц называет функцией распределения по массе [c.121]

    Было установлено, что полидисперсность поливинилового спирта и характер молекулярно-весового распределения резко зависят от метода полимеризации винилацетата и условий этого процесса [20, 33—37]. При полимеризации в растворителе (лаковый метод) процесс протекает гомогенно и при малых степенях конверсии образуется полимер, имеющий молеку-лярно-весовое распределение (МБР) с одним максимумом, удовлетворяющее теории Флори-Шульца. [c.173]

    Уравнение (17) выведено для обрыва радикалов с равным молекулярным весом и не учитывает функции распределения радикалов по длине цепи и изменения размеров клубка с течением времени вследствие реакции роста цепи. Для полидисперсных радикалов уравнение (17) приведет к зависимости к от средней степени полимеризации (Р) . Однако это находится в противоречии с известными данными Шульца о постоянстве значений к при изменении средней степени полимеризации метилметакрилата [63, 64]. [c.54]

    Синтез углеводородов из СО и Н2 по сути своей является реакцией полимеризации. Распределение образующихся продуктов подчиняется кинетике полимеризации и может быть описано уравнениями Шульца (для процесса полимеризации) или Флори (для процесса поликонденсации). При высоких величинах степени полимеризации эти уравнения практически совпадают. Андерсоном показана применимость этих уравнений для описания продуктов синтеза Фишера-Тропша. [c.13]

    После этого необходимо убедиться, что рассчитанные параметры действительно описывают молекулярновесовое распределение. Для этого по вычисленным из моментов кривой параметрам аир строится теоретическая кривая распределения, которая и сравнивается с экспериментальной. Если обе кривые совпадают, анализ закончен. На рис. 81 и 82 приведены некоторые характерные примеры. Для полиметилметакрилата расчет дает функцию распределения Флори в чистом виде, что указывает на отсутствие рекомбинационного обрыва и полностью согласуется с приведенными ранее данными Шульца [39], в которых показана преимуш е-ственная роль обрыва путем диспропорционирования при полимеризации метилметакрилата выше 70°. Наоборот, для полистирола при полимеризации в близких условиях установлена чисто рекомбинационная функция распределения. В полном соответствии с этим при использовании для полимеризации стирола радиоактивного инициатора показано, что на одну образуюш,уюся макромолекулу приходятся два радиоактивных радикала [13]. Распределение, установленное для полистирола, полученного при 4000 ат и 60° (степень конверсии 10%), оказалось промежуточного типа в этом случае имеет место обрыв [c.281]

    Уравнение (19) описывает распределение по молекулярным весам продуктов реакции, протекающей по закону случая, при степени деструкции СХ материала, имевшего бесконечно большой исходный молекулярный вес. Это уравнение Марк и Симха [23] и Шульц [24] модиф ицировали в применении к гомогенно.му исходному материалу с конечным молекулярным весом, Однако наиболее удачное уравнение распределения по молекулярным размерам для таких процессов деструкции дали Монтролл и Симха [19, 25]. Они показали, что при степени деструкции (х общая доля материала, присутствующего в виде /г-мера, равна [c.104]

    Необходимость учета различных типов средних молекулярных весов связана с тем, что полимеры представляют собой гетерогенную смесь молекул с широким распределением по размерам. Средние молекулярные веса всех типов имеют одно и то же значение только для абсолютно гомогенного полимера. По мере увеличения гетерогенности полимера значения средних молекулярных весов расходятся, причем величина их отношения стремится к максимуму, характерному для каждой пары молекулярных весов. Для среднечислового и средневесового молекулярных весов этот максимум равен = 2. Экспериментально найденное значение этого отношения характеризует степень гетерогенности образца полимера. Шульц [15] ввел термин него-могенность , обозначая эту величину буквой Ь и определяя ее как [c.106]

    Степень полимеризации наиболее сильно влияет на вязкость конц. р-ров Ц. э. при низких значениях градиента скорости (или напряжения сдвига). По мере увеличения градиента различие между вязкостями р-ров Ц. э. с различной степенью полимеризации уменьшается и при очень больших градиентах становится незначительным. Полидисиерсность также влияет на реологич. свойства р-ров. Так, при напряжениях сдвига порядка н1ж (10 дип1сж ) вязкости р-ров нитратов целлюлозы, имеющих параметры неоднородности Шульца и 1 и 7=2 (см. Молекулярно-массовое распределение), различаются более чем в 2 раза. [c.433]

    Имаи и Мацумото [28] описали способ фракционирования поливинилового спирта по степени стереорегулярности путем вспенивания водного раствора полимера. Фракции получали с помощью многократного встряхивания раствора и удаления слоя пены. Шульц ж Нордт [29] попытались экстрагировать полимер из раствора с помощью жидкости, не смешивающейся с растворителем. Коэффициент распределения полимера между двумя фазами опять-таки зависит от молекулярного веса растворенного вещества. Но этот метод не позволил получить удовлетворительные результаты для системы полиоксигликоль — хлороформ — бензол. Олмин с сотр. [30, 31] добавил к описанному методу принцип противоточного распределепия, что позволило успешно расфракционировать нолиоксиэтиленгликоли в системе трихЛорэтилен —хлороформ —вода. Прибор, описанный Крейгом с сотр. [c.403]


    Другой пример — измерение распределения полной энергии по поступательной, вращательной и колебательной степеням свободы для молекул в сверхзвуковых пучках [170]. Методом флуоресценции, индуцированной лазерным излучением, Шульц и др. [238] показали, что в сверхзвуковых пучках N32 имеет место значительное внутреннее охлзждение и часть врзщатель-ной и колебательной энергии молекул преобразуется в энергию напрзвленного поступательного движения [239]. Внутреннее охлаждение в сверхзвуковых пучках N02 позволило получить более простой спектр поглощения [240]. [c.304]

    Напомним, что расчеты проделаны для кинетической схемы, в которой обрыв цепи происходил только путем соединения радикалов. В этом случае среднемассовая длина цепи неактивных макромолекул в 2 раза больше среднечисловой длины раднкалад, а отношение мгновеннык средних степеней полимеризации Р ,/Я =1,5, что характерно для эк( поненциального распределения Шульца. [c.146]

    Молекулярно-массовому распределению поликапроамида, синтезированного методом гидролитической полимеризации, посвящено много работ. Отмечается [45, 48—54], что поликапроамид, полученный гидролитической полимеризацией, имеет более узкое молекул ярио-массовое распределение, чем это следует из теории Флори—Шульца. Это объясняется процессами поликонденсации и переамидирования, протекающими в полимере, или термодинамическими причинами [52]. Притом отмечается, что менее полиди-спероным является продукт с блокированными концевыми группами. Но поликапроамид становится более однородным, и с увеличением продолжительности выдерживания его в расплаве под вакуумом средняя молекулярная масса снижается за счет увеличения содержания фракций со средней степенью полимеризации. [c.34]

    Одновременно наблюдалось образование единичных и сопряженных двойных связей в цепи и, как правило, после некоторого индукционного периода сшивание цепей вплоть до образования трехмерных структур с некоторым изменением хода кривых молекулярно-весового распределения деструктированного ПВХ1 1,132 Кривая распределения молекулярных весов исходного ПВХ1 согласуется с теоретически рассчитанной по уравнению Шульца i (а = 0,9989). В ходе термического. разложения ПВХ, как во время индукционного периода до появления нерастворимой фракции полимерного продукта, так и после образования сшитых структур, кривая распределения постепенно смеш ается в сторону более высокой степени полимеризации Р нерастворимого полимерного продукта принята бесконечной). Это означает, что скорость сшивания больше [c.50]

    В известной степени эта зависимость подтверждается тем, что Би-шоф и Дезро [25], как и Мейергоф и Шульц [26], нашли одинаковую величину а = 0,80 для экспонента, отвечающего множителю 1,25 в приведенном выше уравнении. Авторы определяли вязкости фракций полиметилметакрилата в хлороформе, а молекулярные веса путем светорассеяния и седиментации. Прямое и точное сравнение этих зависимостей, содержащих и [т)], с одной стороны, и зависимости, выведенной Тобольским с сотрудниками, затруднительно, поскольку, как это указывают авторы, фракции обнаруживают относительно широкое распределение (Р /Р = 1,2 ч-1,3) и, кроме того, должно быть учтено отношение обеих констант обрыва друг к другу. Найденные Бишофом и Дезро молекулярные веса вероятно занижены. [c.231]

    Для характеристики полнднсперсности полимерного образца Шульц [67] предложил выражение / —1, которое называют коэффициентом полидисперсности, Зимм [68] — выражение [( — />,1.) то1 известное как дисперсия функции распределения. В этом случае г — так называемая г-средняя степень полимеризации, определяемая через третий. момент функции распределения. Квадратный корень из коэффициента полидисперсностн Шульца Лоури [136] использовал как характерист1 к - полимерной однородности. [c.37]


Смотреть страницы где упоминается термин Шульца распределение по степеням: [c.146]    [c.305]    [c.444]    [c.229]    [c.279]    [c.344]    [c.308]    [c.308]   
Химическое строение и физические свойства полимеров (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Распределение степенное

Шульце



© 2025 chem21.info Реклама на сайте