Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимическое хлорирование

Рис. 21. Установка для фотохимического хлорирования жидких углеводородов [17]. Рис. 21. Установка для <a href="/info/424170">фотохимического хлорирования жидких</a> углеводородов [17].

    Было изучено фотохимическое хлорирование изобутапа при температурах до 58° [19]. Исследовано влияние температуры, молярного соотношения реагирующих компонентов, интенсивности света и главным образом конструкции реакционной аппаратуры па соотношение моно- и дихлоридов. Их результаты не совпадают с данными предыдущих исследователей. Они установили, что хлорирование протекает только в жидкой фазе. Если температура реакции настолько высока, что на стенках реактора не может образоваться жидкая фаза, то реакция между изобутаном и хлором вообще не протекает. [c.145]

    Прежде чем перейти к подробному рассмотрению практических методов проведения фотохимического хлорирования, необходимо привести некоторые краткие сведения по теории фотохимических реакций. [c.138]

    Как уже указывалось, реакции фотохимического хлорирования могут осуществляться в аппаратуре, аналогичной применяемой для реакций сульфохлорирования — впервые осуществленного в промышленном масштабе фото-химического процесса. На рис. 21 показано несколько иное аппаратурное оформление, в котором, в частности, следует отметить метод использования актиничного света [17]. [c.144]

    Б. ФОТОХИМИЧЕСКОЕ ХЛОРИРОВАНИЕ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.112]

    В производстве хлорбензолов бензол хлорируют при сравнительно высоких температурах, что позволяет отводить тепло реакции за счет испарения части бензола в отсутствие специальных теплообменных устройств и теплоносителей. При фотохимическом хлорировании бензола температуру процесса регулируют охлаждающей водой (или рассолом), подаваемой в рубашки и трубки Фильда, размещенные в объеме реакционной зоны хлоратора. [c.352]

    Атом хлора, освобождающийся при фотохимическом хлорировании за счет световой энергии, здесь образуется в результате термической диссоциа- [c.113]

    П. ФОТОХИМИЧЕСКОЕ ХЛОРИРОВАНИЕ А. Теория фотохимических реакций [c.138]

    Таким способом фотохимического хлорирования бутана или лучше бутан-бутиленовой фракции в полихлорбутане в качестве растворителя при температуре около 80° и молярном отношении хлор бутан в пределах 6 1 7 1 можно получать полихлорбутаны. [c.191]

    Уже В самом начале было установлено, что при фотохимическом хлорировании еличина Q не равна единице, как можно было ожидать [c.138]

    Совершенно аналогичные цепные реакции протекают и при фотохимическом хлорировании парафиновых углеводородов. По литературным данным [8], квантовый выход при хлорировании -гептана при освещении ультрафиолетовыми лучами равен около 7000. [c.140]


    Хлораторы фотохимического хлорирования размещают в отдельных изолированных кабинах (боксах), что позволяет избежать распространения пожаров и взрывов на рядом размещенное оборудование. Дистанционное управление работой хлораторов позволяет повысить безопасность эксплуатации и уменьшить вероятность поражения людей при авариях. [c.354]

    Б. Практическое проведение фотохимического хлорирования [c.142]

    Фотохимическое хлорирование может применяться для хлорирования как газообразных, так и жидких углеводородов. Особенно просто хлорируются жидкие парафиновые углеводороды, через которые при перемешивании и освещении ультрафиолетовыми лучами пропускают хлор. [c.142]

    Преимущество фотохимического хлорирования по сравнению с термическим заключается в том, что при фотохимическом процессе в значительной степени предотвращаются как разложение сырья в результате пиролиза, так и реакции изомеризации. Реакция начинается практически мгновенно устраняется продолжительный индукционный период с накоплением хлора в реакционном объеме. Это может происходить и при жидкофазном хлорировании в подобных случаях реакция начинается бурно с внезапным выделением тепла и хлористого водорода, что в результате обильного пенообразования приводит к уносу продуктов реакции. Недостатком фотохимических процессов являются увеличенные капиталовложения и эксплуатационные расходы и высокая чувствительность к присутствию подавляющих реакцию примесей. Экономические преимущества фотохимического хлорирования объясняются высоким квантовым выходом. Принимают, что в условиях промышленных установок на каждый излученный световой квант вступает в реакцию около 100 молекул хлора. В зависимости от характера исходного углеводорода, концентрации хлора и температуры ртутная лампа мощностью 400 вт активирует протекание реакции 5—15 кг хлора в час. [c.142]

    Запатентованы самые разнообразные виды аппаратуры для промышленного осуществления фотохимического хлорирования [14]. [c.144]

    Фотохимическое хлорирование парафиновых углеводородов в газовой фазе практически не применяется. В тех случаях, когда хлорирование в газовой фазе легко осуществимо, например при переработке низкомолекулярных парафиновых углеводородов, обычно отдают предпочтение термическим или термокаталитическим процессам. [c.144]

    В качестве примера этого процесса ниже будет рассмотрено фотохимическое хлорирование изобутана в жидкой фазе под давлением. [c.145]

    Другим примером фотохимического хлорирования, осуществляемого при низких температурах, но нормальном давлении, может служить хлорирование хлористого метила в хлористый метилен. [c.146]

    Фотохимическое хлорирование можно проводить также в водной среде. Так, при пропускании этана и хлора при 40—50° через освещенную стеклянную трубку, заполненную 30%-ной водной соляной кислотой, быстро протекает реакция образования хлористого этила. Продукт хлорирования содержит 90% монохлорэтана и 10% дихлорэтана главным образом 1,1-дихлорэтана [23]. [c.148]

    Каталитическое н фотохимическое хлорирование также проводят при высоких скоростях подачи хлора, но в прямых реакционных трубках, которые заполнены катализатором 11 (рис. 32, в) или освещаются кварцевыми лампами 10. [c.161]

    В практике неоднократно происходили взрывы и пожары на установках хлорирования бензола. На одном предприятии в результате коррозии стального трубопровода произошла утечка бензола. При его воспламенении в цехе возник большой пожар, приведший к выходу из строя части оборудования и металлоконструкций здания. Наибольшей опасностью отличаются установки фотохимического хлорирования, так как влажный хлор и продук- [c.352]

    При фотохимическом хлорировании атомы хлора образуются из молекулы хлора, поглотившей квант света с длипой волны около 365 т1л, т. е. с длиной волны, близкой к максимуму поглощения хлора. При термических процессах диссоциация хлора вызывается столкновением молекул с горячей поверхностью. Высказывалось предположение, что хлорирование может протекать в результате образования атомов водорода, но на осповании работы Брауна, Караша и Чао этот механизм почти полностью исключается для хлорирования, протекающего при низких температурах. Эти авторы получили неактивный 1,2-дихлор-2-метилбутан при хлорировании первичного активного хлористого амила. Рацемизацию следовало ожидать в том случае, если бы свободный радикал [c.59]

    Фотохимическое хлорирование требует более высоких капитальных затрат и эксплуатационных расходов но сравнению с термическим хлорированием, однако высокие выхода конечных продуктов делают этот процесс экономически выгодным. [c.118]

    В результате фотохимического хлорирования метана в токе G U при низких температурах (О—30°) получается четыреххлористый углерод с выходом 62,5%. Полезное использование хлора при этом достигает 81 % [138]. [c.120]

    При фотохимическом хлорировании этана нри 125—150° и отношении этана к хлору, близком к стехиометрическому, степень превращения хлора составляет около 99%. Продуктами реакции являются хлористый этил и дихлорэтан. [c.121]


    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]

    Фотохимическое хлорирование является типичным радикально-цепным процессом [1]. Подвод энергии в форме ультрафиолетового света вызывает расш епление молекулы хлора на атомы  [c.112]

    При фотохимическом хлорировании парафиновых углеводородов или реакции газообразной смеси хлор — водород светопоглощающим компонентом является только хлор. Легко можно показать, что смесь хлора с углеводородом дает практически такой же спектр поглощения, как одни хлор. [c.141]

    Прежде особый интерес представляло хлорирование метана для получения тетрахлорзамещеиного производного [15] в последнее время детально изучалось также фотохимическое хлорирование н-бутана и изобутана [16]. [c.144]

    Фотохимическое хлорирование -бутана при 45—55° было детально изучено Топчиевым с сотрудниками [18] с поразительными результатами. Авторы утверждают, что отношение образующихся моно-и дихлорбутанов не может превышать максимальной величины 77 23. При фотохимическом процессе в противоположность термическому хлорированию даже при десятикратном молярном избытке бутана по отношению к хлору авторам не удалось улучшить соотношение выхода моно- и дихлорбутанов. Состав смеси изомерных монохлорндов при фотохимическом хлорировании был таким же, как при термическом, т. е. около 37% первичного и 63% вторичного хлористых бутилов. Объемная производительность реактора достигает 450 г хлористых бутилов на 1 л реакционного объема в час. [c.145]

    При фотохимическом хлорировании для того, чтобы предотвратить образовапие ди- и полизамещенных продуктов крайне важное значение имеет весьма тщательное и однородное смешение исходных компонентов перед воздействием актиничного света. Для этого оба газа подают при сильно турбулентном режиме по стеклянной трубе в темноте. [c.145]

    Фотохимическое хлорирование метана до хлористого метила в жидкой фазе, например, в виде раствора в четыреххлористом углероде, протекает по этому способу значительно хуже. Квантовый выход при хлорировании метана ниже, чем при хлорировании хлористого метилена или хлороформа. При хлорировании метана требуется весьм1а интенсивное облучение, в результате чего получается главным образом [c.146]

    Метан можно хлорировать фотохимичесх и или термически в паровой фазе и фотохимически в жидкой фазе. Пр1. проведении хлорирования метана при 360° в длинном канале между графитовыми поверхностями, отстоящими одна от другой на 0,8 мм, горение и пиролиз устраняются. В другом методе фотохимическое хлорирование в паровой фазе ведется при 60° между гладкими некаталитическими поверхностями, отстоящими друг от друга на 5 мм. Получающаяся смесь поступает в облучаемый сосуд с четыроххлористым углеродом, где хлорирование завершается. Для получения частично хлорированных метанов первую стадию можно опустить и реагенты сразу вводят в освещенный жидкий четырех-хлористый углерод [4]. [c.57]

    При хлоролизе дихлорпентанов всегда наблюдается образование углеподобных веществ. Хлоролиз тетрахлорпентанов, которые легко могут быть получены, например, фотохимическим хлорированием дихлорпентанов, протекает гладко и без выделения углерода, приводя к образованию октахлорциклопентенов, гексахлорэтаиа и четыреххлористого углерода. [c.190]

    Полихлорпроизводные пропана, бутана, пентана и гексана можно, получать непрерывным методом фотохимического хлорирования в жидкофазной системе, пропусканием газообразных или введением жидких углеводородов в жидкий инертный растворитель при высоком отношении хлор углеводород. В качестве растворителя для этого целесообразно применять соответствующий полихлоралкан, получаемый хлорированием незамещенного углеводорода. [c.191]

    Недавно было опубликовано замечание к реферату доклада Суйяра и Юнгерса о фотохимическом и каталитическом хлорировании углеводородов [61] Правильный выбор активируюш,их средств может до известной степени определить место вступления хлора в молекулу . Это дает возлюжность предположить, что при хлорировании парафиновых углеводородов может быть удастся направлять галоид в заданное место. В оригинальной литературе [62] встречается упоминание о давно известном факте, что при хлорировании этилбензола хлор преимущественно (на 80%) становится в/ -положение или что свет способствует замещению в боковой цепи алкилбензолов. Дальше там написано буквально следующее При фотохимическом хлорировании чистых парафиновых углеводородов можно также установить различие между первичными, вторичными и третичными атомами водорода, используя дезактивирующее действие жирных кислот и, возможно, других соединени иа квантовый выход . Эти замечания, сделанные совсем недавно, еще раз указывают на неясные представления о процессах замещения парафиновых углеводородов. [c.559]

    Фотохимическое хлорирование при низкой температуре является удобным методом получения полихлорциклогексанов. Реакцию можно проводить с применением растворителя типа четыреххлористого углерода. Как и в других случаях фотохимического хлорирования, кислород является ингибитором реакции. Свет является мощным ускорителем хлорирования, однако аскаридол может вызвать такую же реакцию и в темноте [17]. Скорость фотохимического хлорирования прямо пропорциональна интенсивности света и не зависит от концентрации хлора. Реакция протекает с квантовым выходом 19—41 моль на 1 квант в области 366—436 т/1. Наиболее эффективным, по-видимому, является свет с длиной волны 366 т/и [4]. [c.65]

    Остаток из отпарной и второй фракционирующей колонн подвергается последующему хлорированию во втором реакторе, которое проводится в жидкой фазе фотохимическим методом (на рисунке не показано). Фотохимическое хлорирование осуществляется при помощи ультрафиолетового освещения, создаваемого ртутнымп лампами. Скорость фотохимического хлорирования очень мало зависит от температуры и оно обычно проводится прн низких температурах. [c.117]


Смотреть страницы где упоминается термин Фотохимическое хлорирование: [c.145]    [c.147]    [c.148]    [c.592]    [c.111]    [c.62]    [c.64]    [c.76]    [c.118]   
Смотреть главы в:

Химическое использование нефтяных углеводородных газов -> Фотохимическое хлорирование

Метан -> Фотохимическое хлорирование


Общая химическая технология органических веществ (1966) -- [ c.175 , c.179 , c.180 , c.352 ]

Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.790 , c.794 ]

Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.135 , c.137 , c.138 , c.149 , c.156 , c.206 , c.214 , c.401 , c.460 , c.481 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.121 , c.124 , c.128 , c.132 , c.189 , c.401 , c.688 ]

Курс органической химии (1955) -- [ c.53 ]




ПОИСК







© 2025 chem21.info Реклама на сайте