Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория фотохимических реакций

    П. ФОТОХИМИЧЕСКОЕ ХЛОРИРОВАНИЕ А. Теория фотохимических реакций [c.138]

    Прежде чем перейти к подробному рассмотрению практических методов проведения фотохимического хлорирования, необходимо привести некоторые краткие сведения по теории фотохимических реакций. [c.138]

    Существуют большие разногласия в подходе к пониманию и предсказанию фотохимической реакционной способности больших молекул в конденсированной фазе. В последнее время несмотря на значительные успехи теории безызлучательных переходов [1], она все еще не достигла такой стадии, когда ее можно было бы непосредственно использовать для предсказания реакционной способности больших органических молекул. Для того чтобы установить, какой продукт должен образоваться в данной реакции, многие исследователи в настоящее время оперируют терминами легких и трудных движений в соответствии с изменениями энергии низшего возбужденного состояния данной мультиплетности [2—5], чаще всего в рамках правил Вудворда—Гоффмана или уравнений метода возмущений. Иногда отмечается, что природа нижнего возбужденного состояния может изменяться в ходе реакции, в силу чего необходимо найти точки легкого обратного перехода на поверхность основного состояния [6—8], и правила Вудворда—Гоффмана, основанные на корреляционных диаграммах возбужденных состояний, бесполезны в этом отношении [7, 8]. Практически полезная теория фотохимических реакций должна различать поведение возбужденных синглетного и триплетного состояний, чего правила Вудворда—Гоффмана [2], как и другие многочисленные подходы [4— 7], к сожалению, не обеспечивают. Кроме того, законченная теория не должна ограничиваться только предсказанием природы продуктов. Она должна объяснять и предсказывать другие явления, как, например, зависимость фотохимической реакционной способности от длины волны или протекание реакций в горячем основном состоянии , которые имеют место даже в конденсированной фазе [9]. Для знакомства с большим, но неизбежно неполным списком литературы, относящейся к этим проблемам, мы отсылаем читателя к ссылке [10]. [c.309]


    Важнейшими фотохимическими реакциями такого рода являются, несомненно, реакции фотосинтеза, протекающие в растениях . К. А. Тимирязев, в результате тщательного изучения этого явления, с несомненностью установил, что синтез углеводов из углекислого газа и воды осуществляется растениями за счет энергии солнечного света, поглощаемого ими, и что к этому процессу полностью применим закон сохранения энергии. Работы К. А. Тимирязева нанесли решительный удар идеалистическим теориям, по которым такой синтез происходит под действием особой жизненной силы . [c.501]

    Основной недостаток теории бинарных столкновений заключается в необходимости введения дополнительного множителя — стерического фактора, теоретический расчет которого в рамках этой теории невозможен, 8.4. Квантовый выход фотохимической реакции может [c.112]

    Между фотохимическими и обычными реакциями имеется существенное отличие термодинамического характера. Протекающие самопроизвольно обычные реакции всегда сопровождаются уменьшением свободной энергии. Для собственно фотохимической реакции свободная энергия возрастает в соответствии с законом сохранения энергии. За счет поглощения квантов света равновесие реакции смещается и меняется ее константа равновесия. Установление этого факта К. А. Тимирязевым для фотосинтеза в растениях имело принципиальное значение. Оно нанесло решительный удар по идеалистическим теориям об осуществлении процессов в природе за счет особой жизненной силы . [c.202]

    Другой характерной чертой фотохимического возбуждения является то, что в случае достаточно узкополосного излучения формируется особое моноэнергетическое состояние частиц. Конечно, возбужденные частицы имеют разброс энергий, связанный с температурой окружающей среды, но при комнатной температуре это распределение очень узкое по сравнению с энергией возбуждения. Еще более узкое распределение можно получить при понижении температуры. Возможность получения моноэнергетических частиц чрезвычайно интересна с точки зрения теории химических реакций, в которой значительное внимание уделяется влиянию энергии частиц на скорость ее реакций. Термическим способом моноэнергетические частицы можно получить лишь с использованием сложных методик, таких, как метод молекулярных пучков, в то время как простые фотохимические эксперименты могут обеспечить относительно узкое распределение энергии электронно-возбужденных частиц. [c.15]


    К цепным реакциям относятся очень многие фотохимические реакции (у 1), процессы горения и окисления, крекинг, полимеризация. Современная теория цепных реакций разработана Н. Н. Семеновым и Хиншельвудом .  [c.99]

    Современные представления о химической сущности стадий получения фотоизображения. Первой стадией фотографического процесса является экспонирование фотоматериала светом и появление скрытого изображения. Механизм образования последнего учеными не выяснен окончательно. Существуют различные теории и взгляды. Однако у специалистов нет сомнения, что оно создается атомами металлического серебра, которые так или иначе образуются вследствие фотохимической реакции, например [c.184]

    Теория промежуточных продуктов игнорируется и недооценивается многими авторами, несмотря на то что в действительности эта теория столь плодотворна, что-она охватила не только область катализа, индукцию, ферментативные и солевые эффекты, но она распространяется яа область полимолекулярных, газовых и фотохимических реакций. [c.300]

    Монография состоит из десяти глав. В первой главе, посвященной общим кинетическим закономерностям химических реакций, рассматриваются простые и сложные реакции и химическое равновесие. Вторая глава посвящена вопросу о химическом механизме реакций. В ней рассмотрены экспериментальные методы изучения механизма реакций, вопрос о промежуточных веществах и реакции свободных атомов и радикалов. Третья глава посвящена теории элементарных химических процессов, включая теорию столкновений и метод переходного состояния. В четвертой главе рассматриваются бимолекулярные реакции различных типов, а также вопрос о зависимости скорости этих реакций от строения реагирующих частиц, и в пятой главе — мономолекулярные и тримолекулярные реакции. Шестая глава посвящена вопросу об обмене знергии при соударениях молекул, играющем основную роль в процессах их термической активации и дезактивации. В седьмой главе рассмотрены фотохимические реакции, в восьмой — реакции в электрическом разряде и вкратце, что, может быть, не соответствует их все возрастающему значению,— радиационнохимические реакции. Девятая глава посвящена цепным химическим реакциям и последняя, десятая, глава — кинетике реакций в пламенах. В этой главе рассматривается также вопрос о равновесиях в пламенах. [c.4]

    Возбуждение атомов и молекул электронным ударом. Функция возбуждения. Роль фотонов, являющихся активирующим фактором в фотохимических реакциях, в реакциях, протекающих в электрическом, разряде, играют быстрые электроны и в значительно меньшей степени — ионы. Активирующая роль быстрых электронов состоит в том, что при соударении электрона с молекулой в результате превращения энергии поступательного движения электрона возникает возбужденная молекула, молекулярный ион или происходит диссоциация молекулы на нейтральные или ионизованные осколки (атомы, радикалы, ионы). Во всех случаях (за исключением процессов, приводящих к образованию отрицательных ионов, см. ниже) речь идет о превращениях кинетической энергии электрона во внутреннюю энергию молекулы. При этом, согласно теории соударения упругих шаров (см. стр. 298), для передачи молекуле энергии Е при центральном ударе достаточно, чтобы энергия электрона К была не меньше Е К>Е). Вероятность передачи энергии, т. е. вероятность активации электронным ударом, обычно характеризующаяся величиной соответствующего эффективного сечения, зависит от энергии электрона, являясь функцией К (функция возбуждения или функция ионизации), а также функцией строения молекулы. [c.395]

    Значения среднеквадратичной энергии АЕ (Ео)) также определяются величинами межмолекулярных потенциалов. Первостепенное значение имеет продолжительность столкновения или время жизни образующегося в результате столкновения комплекса. Статистическая модель столкновений предполагает наличие статистического распределения энергий всех осцилляторов молекул А и М в период соударения. Если перед столкновением молекула А сильно возбуждена, а молекула М. остается невозбужденной, то происходит очень эффективный обмен энергией. Как показано в разд. 1.8, в рамках статистической теории скоростей реакции по этой модели можно легко рассчитать значения (А 2( о)) [97]. Оказывается, что всегда - АЕ Ео))> кТ, поэтому значение Р е в уравнении (1.55) равно единице. Подробности, относящиеся в рамках этой модели к величине (Д ( о)), не представляют интереса для реакций диссоциации. Однако эта модель, вероятно, очень важна для процессов химической активации и фотохимических исследований. [c.78]


    Семенов отмечает, что развитие цепной теории происходило в два этапа. Первый этап, начатый в 1913 г., — это развитие цепной теории в направлении фотохимических реакций второй, начавшийся с 1927 г., связан с ее широким применением к термическим взрывным реакциям. И та роль, какую сыграла реакция Нг + I2 на первом этапе, выпала на долю реакций окисления фосфора и окисления водорода на втором [23, стр. 226]. [c.56]

    Начиная с классической работы Боденштейна (1913 г.) и до начала 30-х годов теория цепных реакций обогащается новыми понятиями, растет число и типы охваченных ею реакций, происходит превращение ее из теории одной фотохимической реакции в теорию большого числа разнообразных по характеру реакций (реакции окисления, разложения, замещения, полимеризации). [c.67]

    В последние годы наиболее интенсивно развивались методы получения изотопов ртути, связанные с использованием фотохимических процессов, которыми принято называть процессы, основанные на химических реакциях возбуждённых частиц, а также на реакциях, фотосенсибилизированных возбуждёнными атомами. Фотохимические реакции органических соединений изучались ещё в XIX веке. К 50-м годам XX века уже были получены заметные успехи в исследовании механизмов фотохимических реакций, а в 60-70-х годах фотохимия пережила подлинный ренессанс, связанный с развитием квантовой химии и квантовой электроники, теории и практики электронной спектроскопии, развитием новых эффективных методов исследования (импульсного фотолиза, хроматографии, оптической резонансной спектроскопии и др.). К настоящему времени показано, что при фотоинициировании могут протекать такие реакции, которые не идут или весьма затруднены при любых других воздействиях (например, тепловых), что и определяет перспективность их использования. [c.488]

    См. H. И. Родный, О теории скоростей фотохимических реакций (к 50-летию работы М. Боденштейна), Вопросы истории естеств. и техники, вып. 15 (1963), стр. 111. [c.410]

    Надо иметь в виду, что в тот период, когда С. В. Лебедевым проводились основные исследования процесса полимеризации двуэтиленовых углеводородов, теория цепных реакций не была еще разработана. Н. Н. Семенов, один из авторов этой теории, указывает [26], что представления о цепи реакций впервые появились в 1913 г. в работе Боденштейна в применении к фотохимической реакции образования НС1. На протяжении последующих десяти лет эти представления встречались попрежнему в области фотохимии. [c.561]

    Ф. X. Гроттус еще в 1817 г. установил, что химически активен лишь тот свет, который поглощается реакционной средой. К. А. Тимирязевым было показано (1875), чго количество продукта, полученного при данной фотохимической реакции, пропорционально количеству поглощенной световой энергии. Эти соотношения были подвергнуты разностороннему изучению (1907—1910) П. П. Лазаревым, показавшим, что количество разложившегося вещества пропорционально количеству поглощенной- энергии. В дальнейшем теория фотохимических реакций развивалась на основе квантовой теории света. [c.500]

    Разработка теории фотохимических реакций необходима не только для препаративных целей, но и для понимания многих важных биохимических явлений. В основе фундаментального процесса усвоения света растением фотосинтеза лежит способность органической молекулы хлорофилла поглощать космическую энергию Солнца и затем трансформировать ее для удовлетворения энергетических потребностей всей биосферы. Восприятие света глазом сопровождается сложными фотохимическими превращениями, в частности, цис-транс-изомерязацт ретинальдегида  [c.286]

    Недавно А. Н. Терениным [291] была дана новая теория фотохимических реакций красителей, предполагаюш ая в качестве первичного фотохимического процесса превращение сенсибилизирующего красителя в состояние малоустойчивого бирадикала с двумя изолированными электронами. Такой, обладающий высокой активностью, бирадикал вступает затем во вторичные окислительно-восстановительные реакции. Эта теория приводит к новым точкам зрения на роль и судьбу хлорофилла при фотосинтезе. [c.310]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]

    В последние десятилетия исследования перициклических реакций оказались весьма плодотворными для понимания механизмов реакций органических соединений. Эти реакции примечательны тем, что они протекают согласованно и через циклическое переходное состояние. Три основных класса перициклических реакций — это электроциклические реакции, включающие замыкание кольца в сопряженную л-систему либо его размыкание сигматропные реакции, в которых о-связь мигрирует по отношению к я-каркасу, и циклоприсоединение и обратная ему реакция. В частности, для предсказания стереохими-ческих последствий и типа энергетически осуществимого циклического переходного состояния Р. Б. Вудворд и Р. Гоффман использовали концепцию орбитальной симметрии. Известные правила Вудворда — Гоффмана обобщают эти идеи и широко используют корреляционные диаграммы. Другие формальноограниченные (но теоретически обоснованные) приближения по выбору правил для перициклических реакций включают использование граничных орбиталей и концепцию ароматического переходного состояния, связанную с идеей циклических полиенов Хюккеля и Мёбиуса (форма Мёбиуса имеет нечетное число поворотов, благодаря чему топология я-системы та же, что и у ленты Мёбиуса). В этой книге не ставится задача описания теории согласованных реакций во всех деталях. Заинтересованный читатель может руководствоваться библиографией по это-v1y вопросу. Мы хотим только показать, как эти приближения лрименяются к возбужденным реагирующим частицам. К счастью, различные приближения почти всегда приводят к одним и тем же результатам (как в термических, так и в фотохимических реакциях). Каждое приближение вносит свой собственный вклад в понимание процессов конкретного типа. Мы используем корреляционные диаграммы, так как это приближение совпадает с нашим представлением о сохранении спинового (или орбитального) момента. Рассмотрим, например, электроциклизацию замещенного бута-1,3-диена в циклобутен  [c.156]

    Наиболее существенной переработке подвергнута гл. Ill, в которой рассматриваются элементарные химические реакции. С более общих позиций, чем в предыдущих изданиях, излагается вопрос о расчете абсолютных скоростей реакций. Метод активированного комплекса (теория переходного состояния) приводится лишь как один из существующих подходов к решению этой задачи. Проанализирован вопрос о границах применимости теории переходного состояния. Даны сведения о новых подходах к расчету абсолютных скоростей реакций — теории мономолекулярных реакций Райса, Рамспергера, Кесселя и Маркуса, о методах расчета динамики газовых бимолекулярных реакций. В 3 гл. Ill приводятся основы диффузионной теории бимолекулярных реакций в растворе. При описании основных типов элементарных реакций, в том числе фотохимических реакций, использованы подходы, основанные на рассмотрении орбитальной симметрии и граничных орбиталей. Расширено изложение клеточного эффекта в свободнорадикальных реакциях, где обнаружены такие важные эффекты, как химическая поляризация ядер и влияние магнитного поля на направление превращений свободных радикалов. [c.5]

    Теория ценных реакций н се нрименепие получили широкое развитие благодаря работам акад. Н. Н. Семенова ы возглавляемой им советской научной школы, а также Ч. Гнншельвуда в Англии. Цепные реакции были открыты ири изучении фотохимических ироцессов. [c.246]

    За последние десятилетия благодаря успехам спектроскопии, квантовой химии и хим. кинетики стало возможным исследовать структуру и св-ва возбужд. состояний молекул и изучать фотохимические реакции с примен. теории элементарного хим. акта. Возбужд. молекулы рассматривают не просто как горячую модификацию осн. состояния тех же молекул, а как иные молекулы, для к-рых характерны свои хим. св-ва и электронное строение, изучаемые т. н. молекулярной Ф. Развитие представлений о механизме фотохим. р-ций способствовало пониманию роли фотофиз. процессов — внутр. и интеркомбинац. конверсии (беэызлу-чательные переходы молекул в иные электронные состояния той же или иной мультиплетности соотв.), безызлучатель-ного переноса энергии. Наиб, важные методы исследования фотохим. р-ций — люминесцентные (см. Люминесценция), импульсный фотолиз. [c.634]

    В предыдущих главах достаточно подробно рассматривались свойства молекул как индивидуальных объектов, не взаимодейстцюпщх друг с другом Для этих объектов существует только один тип реакций, которые получили название мономолекулярных В результате таких реакций происходит превращение (спонтанное или иидущдюваниое, например, светом — фотохимические реакции) одного пространственного изомера в другой Например, бензола в призман Этот процесс может быть описан либо как процесс перехода молекулы из одного минимума потенциальной поверхности в другой той же поверхности, либо как переход из минимума данной поверхности в минимум фугой Это простейший тип реакций, достаточно легко изучаемый и рассчитываемый методами квантовой химии и теории спектров (если речь вдет о фотохтши) Наиболее массовым типом реакций является, однако, другой В общем случае после сближения, например, двух моле А и В образуются новые индивидуальные объекты С (в реакции присоединения А + В -> С ) или С, О, [c.171]

    Объяснение стереохимии реакций электроциклического замыкания и раскрытия циклов — первое достижение теории сохранения орбитальной симметрии, разработанной Вудвардом и Гофманом. Различают два типа электроциклизаций. В первом вращение р-орбиталей х-электронной системы осуществляется в одном направлении и приводит к образованию новой а-связи, во втором — вращение происходит в разных направлениях. П вый процесс называют конротаторным (рис. 4.17, о), второй — дисротаторным (рис. 4.17, б). Правила Вудварда — Гофмана позволяют определить, какой из типов замыкания цикла предпочтителен, и тем самым предсказывают стереохимию образующегося циклического соединения. Правила определяются числом х-электронов, образующих сопряженную ациклическую систему, и тем, протекает ли процесс в основном состоянии (термическая реакция) или в первом возбужденном состоянии (фотохимическая реакция) полнена. Иллюстрация правил- Вудварда — Гофмана приведена на рис. 4.17. [c.104]

    Программа курса Кинетика и катализ охватывает 1) теорию ки-нетики гомогенных процессов (формальная кинетика, за некоторыми специальными исключениями, предполагается достаточно из вестноп из общего курса физической химии), включая разбор механизма элементар ных актов, теории столкновений и активного комплекса, разбор моно- и тримолекулярных реакций и некаталитических реакций в растворах 2) гомогенный катализ, сопря женные реакции и окислительные процессы, теорию промежуточных соединений в гомогенном катализе, кислот но -основной катализ цепные реакции, фотохимические реакции, газовоэлектрохимические реакции (последние в очень небольшом масштабе в связи с читаемым в IX семестре для части студентов специальным курсом Газовая электрохимия ) 3) кинетику гетерогенных каталитических процессов (теория Лэнгмюра, влияние неоднородности поверхности на гетерогенный каталитический процесс, кинетика реакции в потоке, элементы макрокинетики) и 4) теорию активных центров в гетерогенном катализе (первоначальные теории активных центров, теории мультиплетов и активных ансамблей, современные электронные представления в катализе). [c.220]

    И уравнение (1). Первый член в правой стороне уравнения (4) отвечает отталкиванию при взаимодействии систем, и Салем приписал это проникновению электронов в исключающую оболочку (ex lusion ore). Применив эту теорию к реакции Дильса—Альдера для нескольких диенов и диенофилов, Салем доказал важную роль ВЗМО—НСМО взаимодействия [35]. Уравнение, подобное уравнению (4), было также выведено для фотохимического взаимодействия двух сопряженных систем. Девакье и Салем попытались получить энергию объединенной системы двух реагентов, применяя теорию возмущений в формализме ССП МО Фока—Рутана [89], и ввели добавочный энергетический член представ- [c.37]

    Кроме глав I и II, посвяш енных общим вопросам кинетики и механизма химических реакций, главы VI (Реакции комбинации и тримолеку-лярные реакции), глав VIII и IX (Фотохимические реакции и реакции в электрическом разряде), глав XI и XII (Цепные реакции и Процессы горения), подвергшихся существенной переработке и в значительной их части написанных заново, вновь была написана одним из авторов (Е. Е. Никитиным) глава III, посвященная теории элементарных процессов, и теоретические разделы в главе IV (Обмен энергии при молекулярных столкновениях), в главе V (Мономолекулярные реакции) и в главе VII (Бимолекулярные реакции). Кроме того, в монографию включена глава, посвященная радиационно-химическим реакциям (глава X), написанная крупнейшим специалистом в области химии высоких энергий В. Л. Таль-розе, которому принадлежит также 46 монографии (Радиационно-хи-мическое инициирование цепных реакций). [c.6]

    Подход Вудворда — Хоффмана инициировал ряд работ, в которых поднятая проблема рассматривалась с более общих позиций либо были предложены новые аспекты интерпретации правил симметрии в химических реакциях. Так, в работах [260—264] с позиций теории групп обсуждалось соответствие симметрии реагентов, переходного состояния и продуктов. В [265] была сформулирована иерархия правил сохранения симметрии при химических превращениях, в [266]1 обсуждалась адекватность правил симметрии для хартрифоковских волновых функций (в оригинальных работах Вудворда и Хоффмана применялся простой метод МО). Выще мы уже отмечали (см. разд. 1.3), что правила сохранения симметрии были проанализированы для столкновитель-ных газофазных реакций. Применению правил симхмет-рии при обсуждении фотохимических реакций был посвящен ряд работ Салема и др. [267—268]. [c.126]

    В 1913 г. Боденштейном [359] впервые было выдвинуто представ.ление о цепном характере процесса для объяснения чрезвычайно высокого квантового выхода при фотохимическом образовании хлористого водорода. Кроме того, в этой же работе автор предложил метод стационарных концентраций, который позволил выразить концентрацию активных частиц через концентрацию исходных реагентов, исключив первые тем самым из уравнений скорости процесса. Это значительно упрощало расчет скорости реакции. Однако представление Боденштейна, что активным промежуточным продуктом в реакции является электрон, не было подтверждено экспериментально. Через три года Боденштейн предложил впервые в кинетике механизм энергетических цепей, где активной частицей явилась энергетически богатая возбужденная молекула [359а]. Развивая эти представления Боденштейна, И. Хри-стиансен и X. Крамере в 1923 г. впервые отчетливо показали на примере экзотермической реакции, что в самой природе цепного превращения заложена возможность генерации активных молекул. Хотя в дальнейшем развитие цепной теории базировалось на ином представлении о природе активной частицы, так как энергетические цепи не были обнаружены в большинстве процессов , принцип генерации активных частиц остался одним из основных положений теории цепных реакций. [c.154]


Смотреть страницы где упоминается термин Теория фотохимических реакций: [c.294]    [c.281]    [c.12]    [c.61]    [c.85]    [c.268]    [c.89]    [c.51]    [c.47]    [c.33]    [c.524]   
Смотреть главы в:

Парафиновые углеводороды -> Теория фотохимических реакций


Краткий курс физической химии Изд5 (1978) -- [ c.493 ]




ПОИСК





Смотрите так же термины и статьи:

Теории кинетики. Фотохимические, цепные реакции и реакции в растворах

Теория реакций

Фотохимическая реакция

Фотохимические реакции и квантовая теория излучения



© 2025 chem21.info Реклама на сайте