Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина арсины

    Соединения мышьяка — сильные яды для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид, вследствие способности восстанавливаться в арсин, оказывается сильным ядом при гидрогенизации с платиной, применяемой в качестве катализатора. Тот же самый яд относительно слабо действует на изменение активности платины при применении ее для разложения перекиси водорода. В связи с этим [c.403]


    К другому классу процессов спекания можно отнести процесс, в котором рост кристаллитов вызывается адсорбцией на них каких-либо ядов. Можно предположить, что такие процессы ускоряются сочетанием влияния тепловыделения и изменения геометрии кристаллитов при адсорбции. В качестве примера можно привести данные работы [2.54] по адсорбции арсина на платине. [c.39]

    Многие переходные металлы, включая титан, ниобий, тантал, хром, молибден, вольфрам, кобальт, никель, родий, иридий, платину и уран, образуют ионы или молекулы, в которых группы О2 связаны с одним атомом металла. Примерами комплексов, в которых имеется один лиганд О2, связанный с атомом металла, могут служить квадратно-плоский Р1(02) [Р(СбН5)з]2 [1], N1 (0)2(тетрабутилизоцианид)2 [2] и другие, упоминаемые далее. Существуют также молекулы и ионы, в которых с атомом металла связаны две или более группы О2. Помимо групп О2 в координационную сферу металла обычно входят один илп несколько таких лигандов, как галоген, амин, фосфпн, арсин пли СО. [c.203]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]


    В последнее время появилось большое количество статей, посвященных гидрированию ненасыщенных углеводородов, катализируемому комплексами Pt(II) и РЙ(П) в присутствии активирующих добавок галогенидов металлов IV группы, в частности ЗпСЬ. Механизм активации водорода этими каталитическими системами, а также исчерпывающее описание роли сока-тализаторов даны в другом обзоре этого выпуска [1]. Для гидрирования применяли как простые системы, так и системы, включающие лиганды. Последние содержали фосфиты или третичные фосфины, арсины и стибины с добавкой галогенидов платины (или палладия) и олова. Общей особенностью обеих приведенных выше систем является их способность промотиро-вать изомеризацию концевых олефинов в олефины, содержащие двойную связь внутри цепи, а также перегруппировку несопряженных диенов с одной метиленовой группой между двумя двойными связями в соответствующие сопряженные диолефины. Напротив, позиционная изомеризация олефинов с двойной связью внутри цепи протекает в меньшей степени [86]. [c.138]

    Для рассматриваемых квадратных плоских комплексов разница в энергии между наивысшей занятой орбитой йху и наинизшей антисвязывающей орбитой составляет Д (рис. 9-2) для образования стабильной связи между металлом и углеродом эта энергетическая разность должна быть возможно большей. Путь, который дает возможность увеличить Д , состоит в использовании таких лигандов, которые способны образовывать и-связи с орбитами йху и, предпочтительно, также с йхг- и уг-орбитами, уменьшая тем самым энергии этих орбит. Подходящими лигандами для создания тг-связей являются фосфины, арсины, сульфиды и особенно третичные фосфины, которые сочетают в себе сильные донорные свойства с тенденцией к тт-связыванию и дают наиболее яркие примеры образования комплексов никеля, палладия и платины типа (КзР)2МКг. Из комплексов этих трех металлов соединения платины значительно более стабильны, чем соединения никеля палладий же занимает промежуточное положение. Это как раз и есть тот порядок, который следовало ожидать, поскольку с увеличением атомного веса увеличивается также расщепление -орбит для данного ряда лигандов [92а]. [c.503]

    Сильное трансвлияние координированного гидрид-иона обнаружено в реакциях замещения у гидридов рутения, иридия и платины, в которых лиганд в гране-положении к гидриду легко замещается [331]. Исследования спектров протонного магнитного резонанса гидридов показали, что в НКиС1(С0)Ьз (L — диэтилфенилфосфин) фосфин, находящийся в гране-положении к гидрид-иону, замещается различными другими лигандами (L ), например фосфинами, арсинами, фосфитами и фосфонитами, с образованием HRu( o)L2L [332]. [c.250]

    В традиционных направлениях каталитического карбонилирования (гидроформилирование, гидрокарбоксилирование и гидрокарбалкоксилирование) основное внимание уделяется поиску новых высокоактивных, селективных и стабильных, прежде всего гетерогенных, катализаторов с целью интенсификации процессов и повышения их экономической эффективности. В этом отношении принципиальный успех достигнут благодаря широкому изучению каталитической активности металлов VIII группы периодической системы, особенно металлов группы платины. Значительно усовершенствованы гомогенные Со-, Ni- и Fe-катализаторы, в частности модифицированием карбонильных комплексов этих металлов фосфинами, арсинами и аминами. Модифицированные металлокомплексные катализаторы высокоактивны, избирательны и стабильны поэтому можно полагать, что в ближайшее десятилетие могут быть разработаны промышленные процессы синтеза мо-но- и дикарбоновых кислот карбонилированием моно- и диолефинов, диолов, фуранов, непредельных кислот. На повестке дня современной нефтехимической промышленности — разработка промышленного процесса получения предельных карбоновых кислот нормального строения и их эфиров карбонилированием олефинов и спиртов. Значительным достижением в этой области были работы химиков компании Монсанто, открывшие необычайно вы- [c.161]

    Реакции обмена. При взаимодействии галогенидов различных сильно электроноакцепторных и электронодонорнцх элементов с ароматическими углеводородами образуется связь углерод — металл. Эту реакцию можно использовать как препаративный метод для получения фенилбордихлорида (пропусканием паров смеси треххлористого бора и бензола над платино-палладиевым катализатором при температуре 500—600° [12]) и фенилдихлор-арсина (нагреванием смеси паров бензола и треххлористого мышьяка [13]). Арилгалогениды фосфора и алюминия можно получить аналогичным способом. Установлено, что в хорошо известной реакции Фриделя — Крафтса, в которой ароматические углеводороды алкилируются под влиянием каталитического действия хлористого алюминия, в качестве промежуточных продуктов образуются арилалюминийгалогениды. Присутствием аналогичных промежуточных продуктов можно объяснить каталитическую активность галогенидов бора и других сильно электроноакцепторных элементов, ускоряющих реакции углеводородов. [c.65]


    Имеются сведения, что комплексные соединения платины (II) и палладия (II) с трис-(о-дифениларсинофенил)арсином (рАз) [c.80]

    По сравнению с аммиаком и пиридином — лигандами слабого трансвлияния, фосфины и арсины понижают прочность противоположных связей. Диэтилсульфид, диэтилселенид и особенно циклооктадиен ( od), проявляющие сильное динамическое трансвлияние по сравнению с фосфинами, приводят не к ослаблению, а, наоборот, к закреплению противоположной связи. В этом факте Басоло и Пирсон видят несоответствие с другими экспериментальными данными. Однако если иметь ввиду, что эта шкала относится к трансвлиянию в статическом состоянии молекулы, то никакого несоответствия не будет. Благодаря я-акцепторным свойствам сульфидов и особенно олефинов должен повышаться эффективный заряд на атоме платины, а это должно приводить к усилению кулоновского взаимодействия центральный атом—лиганд. [c.201]

    И арсины, имеют наибольшие значения s. Это может быть обусловлено л-акцептирующими свойствами таких лигандов, которые способны оттягивать электроны от платины в переходном состоянии. Чем более нуклео-фильна входящая группа, тем быстрее идет реакция. [c.41]

    Реакции замещения лигандов карбонилгалогенидов платины аминами, фосфинами и другими основаниями Льюиса [15, 966, 1155—1157] происходят так, что в зависимости от природы реагента замещается галоген или СО-группа или обе эти группы в случае комплекса с мостиковыми атомами галогена первая стадия реакции характеризуется обычно разрушением подобных мостиков без какого-либо замещения лигандов. Аммиак, толуидин и другие им подобные реагенты вытесняют СО-группу с трудом более сильные я-связывающие лиганды (фосфины и др.) приводят к быстрому выделению окиси углерода даже при низких температурах. Подобным же образом ведут себя бидентатные лиганды [о-фенилен бис-(диметил-арсин) и др.], обладающие также способностью не только к донорно-акцепторному, но и к значительному дативному связыванию. Вследствие сильного сродства платины к третичным фосфинам, арсинам и стибинам последние значительно стабилизируют карбонилгалогенидные комплексы этих металлов. Что же касается карбонилфторидов металлов этой подгруппы, то вопрос об их существовании пока еще точно не решен. [c.83]

    К соединениям с конфигурацией металла относятся такн е комплексы нульвалентных металлов никеля, палладия и платины, содержащие наряду с моноолефиновым лигандом га-донорпые лиганды, такие, как фосфины, фосфиты, арсины, изонитрилы и т. п. Предполагается, что га-донорные лиганды повышают на металле электронную плотность [21, 187], генерируя вокруг него такое поле, в котором наиболее сильно поляризующееся электронное [c.237]

    Для нульвалентных никеля, палладия и платины получены моноядерные моноацетиленовые комплексы с фосфинами и арсинами типа (КзЕ)2М(Н С2Н"). Ацетиленовые комплексы никеля, как правило, нестабильны, за исключением гексафторбутииового комплекса, который устойчив в твердом состоянии [57, 58, 255]. бис-(Трифенилфосфин)ацетиленовые комплексы платины более устойчивы, чем соответствующие ацетиленовые комплексы палладия и олефиновые комплексы платины [256]. Некоторые из них могут храниться в течение года без разложения. Частота валентных колебаний координированной тройной связи в ИК-спектрах комплексов сильно понижена и составляет около 1700 см для платины [31—33, 37, 61, 237, 238, 274], — 1800 см для палладия [58, 237] и — 1800 см - для никеля 158]. О сильном искажении тройной связи при координации свидетельствуют также данные измерений дипольных моментов комплексов платины величины дипольных моментов комплексов (PhsP)2Pt(XGeH4G2 eH4X) чувствительны ti полярному замещению в п-положение фенильного кольца [287]. Данные ЯМР-спектров и рентгеноструктурного анализа, обсуждавшиеся в разделе I, также указывают на сильное понижение порядка тройной связи в ацетиленовых комплексах платины. [c.422]


Смотреть страницы где упоминается термин Платина арсины: [c.606]    [c.57]    [c.13]    [c.75]    [c.155]    [c.6]    [c.410]    [c.165]   
Современная химия координационных соединений (1963) -- [ c.189 , c.201 , c.318 , c.319 ]




ПОИСК





Смотрите так же термины и статьи:

Арсин



© 2025 chem21.info Реклама на сайте