Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиганды слабым

    Лиганды, находящиеся в левой части спектрохимического ряда, называются лигандами слабого поля или просто слабыми лигандами. Те лиганды, которые находятся в правой части спектрохимического ряда, называются лигандами сильного поля или сильными лигандами. На рис. 23.27 схематически показано, что происходит с энергией расщепления кристаллическим полем при изменении лигандов в ряду нескольких комплексов хрома(Ш). (Здесь уместно напомнить, что при последовательной ионизации атома переходного металла первыми отрываются валентные -электроны. Поэтому атом хрома имеет электронную конфигурацию [Аг] 45 3 , а ион Сг имеет конфигурацию [Аг] 3 .) Отметим, что с усилением поля, действующего на ион металла со стороны шести окружающих лигандов, расщепление энергетических уровней -орбита-лей металла усиливается. Поскольку спектр поглощения связан с этим энергетическим расщеплением, окраска комплексов неодинакова. [c.394]


    На рис. 20-15 схематически изображены четыре из таких р-орбиталей хлоридных лигандов, перекрывающиеся с одной из трех -орбиталей, которые соответствуют энергетическому уровню Если на такой -орбита-ли имеются электроны, они отталкиваются неподеленными парами электронов на этих р-орбиталях, и в результате энергия уровня С2д повыщается. Поэтому лиганд с заполненными орбиталями, обладающими симметрией п-типа относительно линии связи металл-лиганд, понижает энергию расщепления кристаллическим полем, Д . Пользуясь терминологией теории кристаллического поля, такие лиганды (например, ОН , С1 , Вг , I ) называют лигандами слабого поля. Фторидный ион не настолько эффективен в этом отношении, поскольку его электроны находятся на очень компактных орбиталях. Описанный эффект называется я-взаимодействием лигандов с металлом, или Е М-я-взаимодействием. [c.236]

    Такую ситуацию хорошо демонстрирует рис. 13.16, где В—лиганд слабого поля, например Р " или Н,0, который вызывает образование высокоспинового комплекса. Параметр расщепления в нулевом поле О был измерен для нескольких систем такого типа путем изучения спектра в дальней инфракрасной области в магнитном поле. Для различных комплексов были получены значения в интервале 5 — 20 см" [40]. [c.242]

    Одно из наиболее общих непосредственных следствий спектрохимического ряда состоит в том, что для удобства выделяют два предельных случая лигандов лиганды слабого поля (малое расщепление) и лиганды сильного поля (большое расщепление). [c.213]

Рис. 15.2. Расщепление вырожденных d-уровней в поле лигандов. Слабое Рис. 15.2. <a href="/info/1039715">Расщепление вырожденных</a> d-уровней в <a href="/info/16519">поле лигандов</a>. Слабое
    Учитывая спин-орбитальное взаимодействие, изобразите диаграмму уровней энергии иона Сг в октаэдрическом кристаллическом поле, создаваемом а) лигандами сильного поля б) лигандами слабого поля. [c.58]

    Для лигандов сильного поля (правая часть спектрохимического ряда) V для лигандов слабого поля [c.217]

    См. условие задачи 11.23 (поле лигандов— слабое)  [c.198]

    Например, в тетраэдрических комплексах с центральным атомом Ре " ( / ) реализуется -гибридизация (в ней участвуют 4 5- и Ар-АО железа), поскольку все 3железа заняты неспаренными электронами (напомним, что поле лигандов — слабое). [c.193]


    Условие задачи 11.23 (поле лигандов—слабое)  [c.198]

    Мы показали, что магнитные свойства и окраска комплексов переходных металлов зависят от природы лигандов и металла, которая влияет на энергию расщепления кристаллическим полем, А . Тем самым получен ответ на два вопроса из числа поставленных в начале данного раздела. Можно также объяснить необычную устойчивость 3 - и -конфигураций в комплексах с лигандами сильного поля. Эти конфигурации соответствуют полузаполненному и полностью заполненному Г2 ,-уровням. Они обладают повышенной устойчивостью при большом расщеплении уровней по той же причине, по которой устойчивы конфигурации 3 и 3 °, когда все пять -орбиталей имеют одинаковую энергию. Устойчивость 3 - и -конфигураций более заметна в комплексах с лигандами слабого поля, где расщепление кристаллическим полем невелико. [c.237]

    Одно из неожиданных свойств ЩЭ — их способность образовывать комплексные соединения. Обычно полагали, что большие однозарядные катионы ЩЭ не могут выполнять роль центрального иона при ком-плексообразовании нет подходящих орбиталей для перекрывания с орбиталями лигандов, а ионная связь металл—лиганд слаба, так как ионы ЩЭ имеют малое поляризующее действие. [c.21]

    Казалось бы, приведенную выше последовательность можно разделить вертикальной линией, так что все лиганды слева от нее являются лигандами слабого поля, а справа — лигандами сильного поля. Этого, однако, сделать нельзя, так как хотя величина Д приближенно постоянна для данного состояния окисления, она изменяется при переходе от одного состояния окисления к другому. Значения Д для М +-ионов больше, иногда в два раза, чем значения Д для М +-ионов. Более того, значения Д, при которых происходит переход от высокоспиновых к низкоспиновым основным состояниям, различны для разных конфигураций. [c.267]

    Для какого из ионов, Сг " или Сг +, выигрыш в энергии при образовании октаэдрических комплексов с одним и тем же лигандом слабого поля будет большим  [c.142]

    С лигандами слабого или сильного поля комплексы Со являются сильными окислителями, а комплексы Со + проявляют восстановительные свойства Чем это объясняется  [c.143]

    К числу таких комплексов принадлежат образованные лигандо слабого ноля акваионы Fe2+-aq и Fe +-aq. Сюда же могут быть отнесены комплексы железа со многнми полидентатными лигандами, например, с наиболее широко применяемым в промышленности ком-плексоном — этилендиаминтетраацетатом (ЭДТА) [2, с. 164]. [c.128]

    Возможна, однако, и обратная ситуация, когда спин-орбиталь-ное взаимодействие велико, а кристаллическое поле, создаваемое лигандами, слабое. В этом случае в качестве возмущения удобно взять поле лигандов И = . К,, а оператор спин-орбитального взаимодействия включить в невозмущенный гамильтониан. Функции (8.2.4) должны быть дополнены еще четырьмя  [c.408]

    Из табл. 12,3 видно, что выигрыш в энергии поля лигандов при переходе от высокоспинового состояния к низкоспиновому для и с/ -конфигураций вдвое больше, чем для с1 - и / -конфигураций. Таким образом, при условии, что энергия электронного отталкивания в обоих случаях сопоставима, следует ожидать получения низкоспиновых комплексов с и с/ -конфигура-циями при меньших значениях Д, чем для комплексов с / - и конфигурациями. Резюмируя, можно сказать, что ситуация весьма сложная. Единственные общие правила, которые можно дать, — это то, что ион СЫ всегда лиганд сильного поля (низкоспиновый) для первого ряда переходных элементов и что галогенид-ионы всегда лиганды слабого поля (высокоспиновые). Н2О почти неизменно лиганд слабого поля, а МНз может быть лигандом и слабого и сильного поля в зависимости от иона металла. [c.267]

    В зависимости от величины параметра А лиганды подразделяют на лиганды слабого поля и лиганды сильного поля, что определяет порядок заселения электронами d-орбиталей металла. [c.527]

    Некоторые комплексные соединения двухвалентной платины в водном растворе могут изомеризоваться, т. е. одни изомеры могут превращаться в другие. Процесс изомеризации обычно происходит путем диссоциации (ионизации) исходного изомера и образования в качестве промежуточного соединения — продукта замещения одного (или нескольких) лиганда слабым лигандом — водой. При этом ионы С и Вг замещаются молекулами Н2О относительно легко, а азотсодержащие лиганды — с трудом и часто только при нагревании. Этот процесс обратим. При обратной реакции, протекающей по такому же механизму диссоциации, лиганды Н2О замещаются на исходные лиганды. В результате образуется комплекс первоначального состава, но с возможно иным геометрическим расположением лигандных частиц в структуре молекулы комплекса. [c.35]

    В приближении поля лиганда каждый электрон располагается на самом низком энергетическом уровне. Если поле лиганда слабое (т. е. Д мало), число неспаренных электронов максимально. Такие комплексы называют комплексами со свободными спинами, или высокоспиновыми, что аналогично термину внешний комплекс . Если поле лиганда достаточно сильное (большое значение Л между t2g и eg), предпочтительным является спаривание спинов это приводит к образованию комплекса со спаренными спинами или с низким суммарным спином. [c.178]


    В принципе возможна достройка квадратного комплекса с четырьмя лигандами сильного поля до октаэдрического при помощи двух лигандов слабого поля. В таком комплексе разность энергий высокоспинового и низкоспинового состояний приблизительно равна энергии теплового возбуждения вблизи комнатной температуры. В таком случае магнитные свойства и спектры должны проявлять определенную температурную зависимость в соответствии с законом распределения Больцмана. Примером такого комплекса является описанное в литературе [61 соединение Ni N,N -диэтил-тиомочевина)4С)2. [c.305]

    ПЛОТНОСТИ я-орбитали находится между атомами С и N. а не в направлении к атому металла. Гораздо сильнее взаимодействует с уровнем 2д металла разрыхляющая я -орбиталь (рис. 20-16,6). Однако в этом случае эффект обратен тому, который наблюдался для лиганда С1 . Электроны на Сзд-орбиталях металла получают возможность частично делокализоваться и переместиться на я -орбиталь лиганда. Такая делокализагшя стабилизирует 2д-орбиталь, т. е. понижает ее энергию. В результате возрастает энергия расщепления, Д . Этот эффект представляет собой я-взаимодействие металла с лигандом, или М - Ь-я-взаимодействие нередко его пазы вают еще дативным я-взаимодействием. Лиганды, повышающие расщепле ние уровней указанным образом (СО, СЫ , N0 ), пользуясь терминоло гией теории кристаллического поля, называют лигандами сильного поля Одноатомные лиганды с несколькими неподеленными парами электронов как, например, галогенидные ионы, являются лигандами слабого поля, по тому что они играют роль доноров электронов. Связанные группы атомов наподобие СО скорее относятся к лигандам сильного поля, потому что их связывающие я-орбитали сконцентрированы между парами атомов и удалены от металла, тогда как пустые разрыхляющие молекулярные орбитали простираются ближе к металлу. [c.237]

    В спектрах октаэдрических комплексов Со с лигандами слабого поля (Dq/B = 0,7) наблюдаются три хорошо разрешенные полосы. Проведите каче-ствеппое отнесение этих полос, используя диаграммы Танабе — Сугано, и выпишите их в порядке снижения частот. Каким будет спектр октаэдрического комплекса Со с лигандами сильного поля  [c.125]

    Электроны, заселяющие -орбитали с пониженной кристаллическим полем энергией, стабилизированы относительно средней (невозмущенной) энергии -орбиталей на величину, называемую энергией стабилизации кристаллическим полем. В комплексах с лигандами сильного поля расщепление энергетических уровней -орбиталей настолько велико, что превосходит энергию спинового спаривания, и для -электронов выгодно спиновое спаривание на орбиталях нижнего энергетического уровня. В результате образуются низкоспиновые комплексы. В комплексах с лигандами слабого поля после заселения нижних по энергии орбиталей электроны начинают заселять -орбитали верхнего энергетического уровня, так как это выгоднее, чем спиновое спаривание на орбиталях нижнего уровня, и в результате возникают высо-коспииовые комплексы. [c.401]

    Пример 3. Составьте энергетическую диаграмму образования связей в октаэдрическом комплексе [Ре(С204)з] (поле лигандов— слабое) и укажите тип гибридизации орбиталей центрального атома. [c.189]

    Для центрального атома Си известны тетраэдрические комплексы с лигандами слабого поля, например комплекс [СиСЦ] . Составьте энергетическую диаграмму образования связей, пользуясь рис. 11.5. [c.201]

    Описаны также квасцы М Со (S04)2-I2H2O. Это темно-голубое вещество с диамагнитными свойствами, что указывает на нахождение Со (III) в сильном поле, по-видимому, 504 -ионов. При разбавлении системы водой (лиганд слабого поля) Со (III) немедленно восстанавливается до Со (II). На координационную природу ацетата Со (III) также указывает его мгновенное разложение водой. [c.142]

    Окращенные в зеленый и синий цвет комплексы N1 (II), как правило, имеют октаэдрическую конфигурацию. В подавляющем большинстве случаев это высокоспиновые парамагнитные комплексы лигандов слабого поля. Лиганды среднего поля склонны к образованию с ионом комплексов, имеющих тетраэдрически искаженную октаэдрическую симметрию, а лиганды сильного поля — квадратную симметрию. Здесь играет роль эффект Яна-Теллера [2] при Зс -электронной конфигурации N1 + распределение валентных электронов может быть выражено формулой При этом октаэдрическая симметрия кри- [c.147]

    Разница в кинетических свойствах комплексов элементов триады железа и ПЭ часто усугубляется еще и тем, что различается симметрия комплексов одного и того же состава. Так, например, комплексы [Pt U]2- и [Pd U] - имеют квадратную симметрию, а [Ni U] — тетраэдрическую. Тетраэдр не превращается в квадрат в случае Ni (II), так как расщепление относительно мало, а С — лиганд слабого поля (см. об эффекте Яна-Теллера, например, в [2]). [c.165]

    Природа лиганда слабо отражается на величине кс, но металл влияет на эту константу, кс растет с увеличением основности лиганда для ионов Ве2+, А1 +, Ре +. Значения кс для щелочных металлов указывают на лабильность их акваионов. [c.258]

    Картина МО становится более сложной, если учитывать л-связи между металлом и лигандом, как, например, в случае карбонила - Сг(СО)в- Три ёу,-, х -орбитали металла ( 2,-орбитали) могут участвовать в образовании п-МО. Получаются связывающие и разрыхляющие -уровни МО, что показано на рис. 8.18, а. Понижение 2 -Зфовня за счет л-связи увеличивает разницу в энергии А между уровнями 2, и е. Следовательно, лиганд, который помимо а-связи может образовывать л-связь, используя заполненные орбитали металла и вакантные л-орбитали лиганда (механизм образования подобной связи называется л-дативным), является лигандом сильного поля . Соответственно лиганд, не способный к образованию л-связи, является лигандом слабого поля . Такая ситуация возникает, если лиганд имеет занятые р-орбитали, например, в случае неподеленных пар электронов в хлоридном лиганде (атомные Зр-орбитали). <2 -Уровень становится ниже е -уровня (рис. 8.17, б), и теперь разность в энергии между и -уровнями может быть очень небольшой. Таким образом, галогениды являются "лигандами слабого поля . [c.536]

    На основе рассмотренных выше данных можно объяснить результаты, представленные в табл. 4.32. В комплексах Ре(П) и Мп(П) только лиганды сильного поля ( N , phen) приводят к образованию низкоспиновой конфигурации, а все остальные — к высокоспиновой. У Со(III) почтп для всех лигандов характерна низкоспиновая конфигурация, и только лиганд слабого поля F дает высокоспиновую конфигурацию в [СоРб] . Все ко1Йплексы Rh(III), Ir(III), Pd(IV), Pt(IV) и других элементов с большим атомным номером и ионами в высоком валентном состоянии дают низкоспиновые конфигурации. Таким образом, сила лигандов в спектрохимическом ряду определяет [c.234]

    Лиганды, приводящие к высокоспиновым конфигурациям, называются лигандами слабого поля, а лнганды, для которых характерны низкоспиновые конфигурации — лигандами сильного поля. — Прим. ред. [c.234]

    Циклотетрамеризация ацетилена в циклооктатетраен была открыта Реппе и Топелем в 1943 г. Интересно отметить, что до этого циклооктатетраен получали классическим 13-стадийным синтезом с общим выходом всего I—2%. Выход при циклизации ацетилена с использованием ни елевого катализатора равен 70%. Лучшими катализаторами являются лабильные октаэдрические комплексы никеля (П), содержащие лиганды слабого поля, например ацетилацетонат или са л ицил альдегид [125д]. Реакцию обычно проводят в безводной среде в бензоле, ТГФ или диоксане при 80—120 °С и давлении ацетилена 10— [c.129]

    Таким образом, видно, что разность свободных энергий адсорбции веществ X и V, равная только нескольким килокалориям на моль, приводит к очень высокой степени заполнения поверхности более сильно адсорбированным углеводородом. Для всех описанных до сих пор систем наблюдалось, что алкины и диолефины адсорбируются гораздо сильнее, чем моноолефины, которые получаются при их гидрогенизации. Повторная адсорбция олефина в присутствии ацетилена и диолефина обычно незначительна, а в некоторых случаях совсем отсутствует. Хотя таким путем можно различать факторы, относящиеся к механизму и термодинамике процесса, эти факторы неразделимы полностью. Возвратимся к вышеприведенной схеме (I), из которой видно, что адсорбция реагента может способствовать десорбции олефина. Здесь можно провести аналогию с реакциями металлоорганических соединений, где органический лиганд, слабо связанный с атомом металла, заменяется лигандом, образующим более прочную связь с металлом. Итак, относительные скорости десорбции и гидрогенизации олефина в отсутствие или при наличии С Н(2п 2) могут сильно различаться между собой в последнем случае преимущественно образуется олефин. Имеется много доказательств этого факта. [c.410]

    Связь комплексообразователя с лигандами обычно уменьшается по мере роста г . Так, в третьей группе периодической системы ионы В + являются наиболее сильными комплексообразовате-лями. Ионы АР " и Зс " " (га=6) связывают свои лиганды слабее, а и Ьа " " комплексных соединений в растворах не образуют. Заряженные лиганды взаимно отталкиваются, поэтому наиболее высокие значения координационного числа и=12 и более наблюдаются только с нейтральными лигандами. [c.203]

    Как отмечалось, известно много лигандов, у которых есть заполненные и вакантные я-орбитали, но не всегда легко предсказать, какие из них внесут больший вклад в общее связывание и в какой степени. Например, ионы СГ, Вг и Г имеют заполненные и вакантные -орбитали. По-видимому, для З -атомрв металлов в их нормальном окислительном состоянии более важным оказывается взаимодействие заполненных р -орбиталей. Этот случай реализуется для лигандов слабого поля. Однако есть доказательства того, что для ионов последних элементов рядов 4(1" и в особенности для Р1 , Р(1 , Hg и Аи стабилизирующий эффект, возникающий вследствие использования незаполненных -орбиталей, играет доминирующую роль. У таких лигандов, как СМ , СО, пиридин, о-фенантролин, ацетилацетонат-ион и др., вакантные я-орбитали являются разрыхляющими я-молекулярными орбиталями, а заполненные я-орбитали — связывающими я-молекулярными орбиталями. Хотя принято считать, что такие лиганды, как СО и СМ, в комплексах используют для образования я-связи главным образом вакантные разрыхляющие я-орбитали, постулировать это нельзя. [c.433]

    Лиганды, расположенные в конце спектрохимического ряда лиганды слабого поля), вызывают малое расщепление энергии -подуровня. В этом случае энергия взаимного отталкивания двух спаренных электронов оказывается более высокой, чем энергия расщепления. Поэтому -орбитали заполняются электронами в соответствии с правилом Хунда первые три электрона распределяются по одному на -орби-талях, а следующие два — на уорбиталях. Только после этого начинается попарное заполнение электронами сначала а затем у-орбиталей. [c.206]

    В литературе наряду с терминами высокоспиновый и низко-спиновый комплекс можно часто встретить термины слабое поле лигапдов и сильное поле лигандов. Слабое поле соответствует высокоспиновым комплексам, сильное — низкоспиновым. Количественно сила поля лигандов, как уже было указано на стр. 319, характеризуется специальными параметрами. Если речь идет о комплексе, построенном по типу правильного октаэдра, то в сущности единственным таким параметром является разность энергии, отвечающей верхнему и нижнему уровням расщепленного исходного )-терма [c.326]


Смотреть страницы где упоминается термин Лиганды слабым: [c.206]    [c.207]    [c.283]    [c.198]    [c.146]    [c.254]    [c.567]    [c.50]    [c.445]    [c.207]   
Справочник Химия изд.2 (2000) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Слабов



© 2024 chem21.info Реклама на сайте