Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ароматических колец

    V Промышленный алюмокобальтмолибденовый катализатор обладает весьма высокой избирательностью. Реакций разрыва связей С—С или насыщения ароматических колец в его присутствии практически не протекают. Он обладает высокой активностью в реакциях разрыва связей С—S и высокой термической стойкостью, вследствие чего имеет длительный срок службы. Важным преимуществом данного катализатора является стойкость к потенциальным каталитическим ядам. Кроме того, этот катализатор обладает приемлемой [c.12]


    Для однородных фракций были определены содержание углерода и водорода, молекулярный вес, плотность, коэффициент преломления, удельная дисперсия, температура кипения и анилиновая точка, вязкость при 100°. В дополнение к этим данным для полностью гидрированных фракций экстракта был произведен приблизительный подсчет числа ароматических колец в молекулах фракций ароматического экстракта. Если допустить, что нафтеновые кольца в нефтяных углеводородах имеют такое же строение, как и бензольные кольца, и что кольца полициклических ароматических и циклопарафиновых углеводородов имеют конденсированную структуру, то на основании приведенных выше данных можно было определить структуру колец циклических углеводородов и число углеродных атомов в парафиновой боковой цепи, связанной с кольцом. [c.31]

    Ароматические углеводороды окисляются несколько труднее, чем нафтены, но стойкость их против окисления падает по мере усложнения молекул, в частности с увеличением числа колец. При этом в случае наличия у ароматических колец коротких боковых цепей (или коротких цепей, связывающих между собой ароматические радикалы) окисление сопровождается образованием высокомолекулярных продуктов— смол, асфальтенов и карбенов, часто выпадающих в осадок. Если даже у ароматических колец имеются длинные алкильные цепи, то в результате окисления образуется меньше полимеров, но больше органических кислот и подобных продуктов, не выпадающих в осадок. [c.142]

    Количество тех или иных продуктов окисления обусловливается преобладанием нафтеновых или же ароматических колец в молекулах. Для получения масел, не дающих при окислении осадков, желательно, чтобы в них оставались нафтеновые и ароматические уг- [c.142]

    Кд — число ароматических колец в усредненной молекуле нафтено-аромати-ческой фракции [c.6]

    Б. Тиссо и Д. Вельте обращают особое внимание на характеристику УВ. Так, они отмечают, что парафины включают н-алканы и изоалканы, за исключением алкильных цепей — заместителей в циклических ядрах. К нафтенам относятся молекулы с одним или несколькими насыщенными циклами при отсутствии ароматических колец. Ароматические соединения включают молекулы, содержащие не менее одного ароматического ядра. Эти же молекулы могут включать конденсированные насыщенные кольца и цепи — заместители в ядре. Таким, образом, данная классификация, хотя и содержит значительно больший объем информации, чем предыдущие, где в основном обращалось внимание лишь на углеводородный состав, все-таки не позволяет полностью охарактеризовать нефть в целом. [c.14]


    Г.И. Сафонова и К.Ф. Родионова отмечали генетические различия нефтей по распределению нафтенов с разным числом колец и по характеру распределения парафинов с разным числом атомов углерода. Нами отмечались в качестве генетических различий в структуре нафтено-ароматических УВ количество и соотношение нафтеновых циклов и ароматических колец в гибридной молекуле [1, 11]. [c.38]

    Метод идентификации состава нефтяных фракций с помощью жидкостно-адсорбционной хроматографии [2 2] ис позволяет проводить четкое деление углеводородов и сернистых соединений нефти, выкипающих выше 300"С, по числу ароматических колец. Поэтому фракции, выделяемые методами адсорбционной хроматографии, должны более глубоко исследоваться по составу. Сочетание этого метода со спектроскопией УФ-, ЯМР-, масс-спектрометрией может [c.34]

    Соотношение нафтеновых циклов и ароматических колец в молекулах нафтено-ароматической фракции (характеристика гомологического ряда). [c.44]

    Большая часть мезозойских нефтей содержит меньше парафино-нафтеновых и больше нафтено-ароматических УВ и смол, чем палеозойские. Степень циклизации парафино-нафтеновых УВ большинства мезозойских нефтей выше, чем палеозойских (К до 1,1), на долю атомов углерода в кольцах приходится 20-33 % (среднее 27 %). В парафиновых цепях меньше атомов углерода (11-17). Общее число колец нафтено-ароматической фракции ниже (2), ароматических колец меньше (1 -3), в парафиновых цепях меньше атомов углерода (6—15). [c.93]

    Характер присоединения циклопарафиновых и (или) ароматических колец в полициклических углеводородах, т. с. выяснение вопроса о том, [c.31]

Рис. 6. График для определения числа нафтеновых и ароматический колец. Рис. 6. График для <a href="/info/1620320">определения числа нафтеновых</a> и ароматический колец.
    Прямой метод позволяет точно определить процентное содержание углерода в ароматических кольцах (% Сд) и среднее значение общего числа колец (ароматических и нафтеновых) на молекулу (/ о)- Исходя из предположения о типе присутствующих колец или считая, что число атомов углерода на кольцо зависит от числа колец, на основании этих двух величин (% Сд и Во) можно вычислить распределение углерода по ароматическим, нафтеновым и парафиновым структурам (% Сд, % Сн и С>п) в масле и среднее число нафтеновых и ароматических колец на молекулу (7 н и Яд). [c.371]

    Из рис. 14 видно, что даже первые фракции, растворимые в ацетоне при очень низких температурах, содержат нафтеновые кольца. Очевидно, в этих фракциях молекулы углеводородов содержат ароматические и нафтеновые кольца рядом. Общее содержание колец постепенно уменьшается, а число ароматических колец непрерывно падает. [c.395]

    Реакции конденсации. Реакции дегидрирования также сопровождаются процессами конденсации с образованием дополнительных ароматических колец. Имеется три основных тина таких реакций  [c.108]

    Метилирование. Свободные метильные радикалы, но-видимому, значительно меиее активны, чом фенильные, и они проявляют пониженную склонность к отрыву водорода в алифатических соединениях или к замещению в ароматическом кольце [296]. Метилирование ароматических колец протекает с удовлетворительными выходами только, осли в кольце содержится одна или болео групп, которые являются активирующими по отпошепию к замещению свободными радикалами (табл. 17). [c.466]

    Гидрирование ароматических углеводородов осуществляется последовательным насыщением ароматических колец с возможным сопг тствующим разрывом образующихся нафтеновых колец и де — алк1 [лированием. [c.225]

    Среди неуглеводородных компонентов нефти основное место занимают смолы и асфальтены. Эти сложные соединения состоят из полициклических ароматических и (или) нафтено-ароматических колец и связанных с ними парафиновых цепей, гетероатомов кислорода, азота и серы. Серы в нефтях мало, но ее присутствие, особенно в количрстве более 1 %, — важный фактор как для технологических процессов переработки, так и для решения ряда геохимических задач. [c.12]

    Нами был исследован и. с. у. различных компонентов нефти парафино-нафтеновой и нафтено-ароматической фракции, смол и асфальтенов. Было отмечено, что и. с. у. смол всегда тяжелее и. с. у. парафино-нафтеновой фракции, но по отношению к ароматической фракции смолы могут иметь как идентичный, так и более легкий или более тяжелый и. с. у. Нами был сделан вывод, что идентичный и. с. у. аренов и смолистых компонентов свидетельствует об их вторичном происхождении, связанном с окислительными процессами в нефти. Разный и. с. у. имеют смолы первичного происхождения. Смолы с легким и. с. у. могли иметь свои первичные источники образования, возможно, типа лигнина. Смолы с тяжелым и. с. у. представляют собой, по-видимому, остаточную часть сложной гибридной структуры, в результате деградации которой происходило образование нафтеновых циклов и ароматических колец. Внедрение кислорода в эту сложную структуру могло, по мнению А.Ф. Добрян-ского, происходить на ранней стадии нефтегазообразования, когда система не была еще полностью изолирована от влияния кислорода. [c.32]


    Не менее важен процесс гидроочистки, предназначенный для улучшения качества углеводородного сырья. Ей подвергают бензины, лигроины, топлива для реактивных двигателей, дизельное топливо, масла, мазуты, угольные смолы, продукты, получаемые из горючих сланцев и т. д. Обработка водородом в присутствии катализаторов освобождает сырье от связанной серы, азота и кислорода, а также ведет к гидрированию ненасыщенных углеводородов и ароматических колец. Процесс проводят при 300—400°С, 3—4 МПа и 10-кратном избытке водорода. После гидроочистки как правило изменяются запах и цвет продуктов, уменьшается количество выделяющихся смолистых веществ, улучшаются топливные характеристики, повышается стойкость при хранв НИИ. Особенно важно удалить из топлива серу, чтобы предотвратить отравление воздуха диоксидом серы, который образуется при сгорании топлива. [c.90]

    Сравнительную легкость образования свободных радикалов этими соединениями можно объяснить следующим образом. В полиарилэтане центральная С—С-связь ослаблена вследствие делокализации валентных электронов этой связи, обусловленной их взаимодействием с я-электронами ароматических колец. [c.41]

    Приведенные данные позволяют судить о числе ароматических колец в ароматичс Ской части, оставляя без ответа вопрос о том, являются ли ароматические углеводороды конденсированными или псконденсирован-ными, и но решая вопроса о числе циклопарафиновых колец, связанных с ароматическими кольцами. Процентное содержание ароматических углеводородов, приведенное выше, включает такн1е и сернистые соединения, которые концентрируются в ароматических фракциях. Содержание серы в исходном газойле составляло 0,1)6%. [c.34]

    Следует отметить, что данные Чарлета и др. по ароматическим углеводородам в газойле не сспостапимы с такими же данными Клерка и др. В протииопол( Жность хроматографическому определению ароматики по числу ароматических колец без учета того, является ли ароматика конденсированной или неконденсированной (Клерк и др.), типы ароматических углеводородов, определенные по спектрам поглощения в ультрафиолетовой области, классифицировались на основе структуры конденсированных колец. Следовательно, ароматика, классифицированная как бензолы , включает не только алкилбензолы, но также и фенилзамещенные парафины. [c.35]

    В интервале молекулярных весов, соответствующем смазочным маслам, можно пользоваться удельной дисперсией как мерой наличия или отсут-СТ1ШЯ ароматических колец. Значения удс льной дисперсии менео 100 обычно признаются кат доказательство того, что образец не содержит ароматических углеводородов. Более чувствительным методом обнаружения Ш1зких концентраций ароматических углеводородов является поглощение в ультрафиолетовой части спектра. Примеры применения удельной дисперсии см. у Россини 172], Рэмптона [701 и Гудингса [25]. [c.264]

    Ароматические углеводороды, содержащие одно иля несколько ароматических ядер, которые могут быть соединены с нафтеновыми кольцами (замещенными или не замещенными алкильными цепями) и (пли) с боковыми парафиновыми цепями ароматические яд] а могут быть конденсированными, как у нафталина пли фенантрена, или изолированными, как в дифснилметане. Поэтому, с одной стороны, можно различать ароматические типы бензольные, нафталиновые, фенантреновые и т. п., а с другой стороны, иногда удобно выделять типы моно (одноядерные) ароматические, диароматические, триароматические и т. д. в зависимости от числа ароматических колец в молекуле. Смешанные нафтено-ароматические углеводороды, по-видимому, очень часто встречаются в нефтяных фракциях. [c.364]

    Ароматические углеводороды дюгут быть удобно сгруппированы в ароматический тип , описывающий компоненты, имеющие то же количество и ту же группировку ароматических колец. Если в ароматическом углеводороде содернштся два ароматических кольца, следует различать три типа, а именно [33]  [c.367]

    Этот метод следует предпочесть тому, который выражает процент ароматических колец, нафтеновых колец и парафиновых цепей и легко иллюстрируется при рассмотрении гексилбензола и гексаметилбензола, каждый из которых имеет эмпирическую формулу СхаН . В обоих случаях содержание Сд составляет 50%, ароматических колец 47,5% для гексилбензола и 44,5% для гексаметилбензола, потому что в первом случае пять водородных атомов включены как часть в ароматические кольца, а во втором нет. [c.368]

    Липкин, Куртц и соавторы [16, 271 в 1946 и 1947 гг. опубликовали два метода структурно-группового анализа один для исследования парафино-нафтеновых смесей (масла, не содержащие ароматических колец) и другой — для парафино-ароматических смесей (масла, не содержащие нафтеновых колец). Так как масла обычно содержат в 1есте парафиновые цепи, нафтеновые и ароматические кольца, то применение этих методов требует или предварительной обработки, или предварительного разделения. Методы основаны на определении плотности (или коэффициента преломления) и их температурной зависимости. Применяя переводные таблицы, можно определить температурный коэффициент плотности по молекулярному весу, который в свою очередь обычно определяется на основании физических свойств. [c.370]

    Для вычисления среднего числа ароматических колец на молекулу 7 д и процентного содержания атомов углерода в кольце % из % Сд и Но Динслей и Карлтон высказали дополнительно предположение относительно числа атомов углерода на кольцо для каждого образца, используя для этого инкремент двойной связи молекулярной рефракции образца. Очевидно, дисперсионно-рефрактолютрический метод может быть также использован в комбинации с предположением о ката-конденсированных шестичдонных кольцах, как в рассмотренном выше прямом методе. [c.374]

    Применимость метода к анализу ароматических фракций ограничена фракциями, не имеющими нафтеновых колец и состоящими толт.ко из ароматических колец. Этот метод может быть рекомендован для анализа алкилированных ароматических соединений. Согласно общеприня1ым взглядам ароматические молекулы высококипящих нефтяных фракций прямой гонки почти всегда содержат нафтеновые кольца, поэтому метод, разработанный для алкилированных ароматических углеводородов, вероятно, по применим к газойлевым и масляным фракци>[м. [c.382]

    Указанные три типа конденсации в значительной мере обусловли- вают конверсию низкокипящих нефтяных фракций малого удельного веса в высококипящие остаточные тяжелые масла — смолы, пек и т. д. Такие остатки не только с трудом крекируются, но и дают при этом значительные отложения кокса и лишь немного светлых продуктов, и поэтому считается, что их невыгодно перерабатывать с помощью простых термических реакций. Кроме того, следует обратить внимание на канцерогенные свойства остатков, кипящих выше 370° С, что создает дополнительную трудность в их использовании. Диц и др. [7], исследуя различные фракции нефти, нашли (табл. 7), что выход полициклических ароматических углеродов, являющихся основными канцерогенными веществами, увеличивается при каталитическом крекинге фракции 230—500 С нефти Зап. Техаса. Таким образом, хотя свыше 90% сырья содержит менее 3 ароматических колец на молекулу, 67% продуктов крекинга содержат 4 или больше колец на молекулу. [c.109]

    Каталитический крекинг углеводородов над кислотными катализаторами представляет собой ускоренный сравнительно с термической реакцией при тех Н 8 самых физических условиях разрыв углерод-углеродных связей. Углеродный скелет ароматических колец остается при этом по существу нетронутым и фактически имеют место разрывы связи между углеродными атомами а) алифатический-алифатический, б) алифатичоский-алп-циклический, в) алициклический-алициклический, г) алифатический-аро-матический и д) алициклический-ароматический. [c.114]

    Нитрогруппа является электрофильной группой и поэтому входит в места ароматических колец с наиболее высокой концентрацией электронов. В соответствии с правилом Крам-Браун-Джибсона сама нитрогруппа направляется в л -положение. Вследствие электроположительной природы нитрогруппа отрывает электроны от ароматических колец, деактивируя их в отношении реакции дальнейшего замещения. Например, для получения полинитросоединений требуется применение более жестких условий реакции, чем для получения мононитропроиз-водных. [c.545]


Смотреть страницы где упоминается термин ароматических колец: [c.10]    [c.51]    [c.42]    [c.169]    [c.34]    [c.79]    [c.270]    [c.368]    [c.373]    [c.375]    [c.381]    [c.384]    [c.388]    [c.464]    [c.110]    [c.37]    [c.43]   
Каталитические свойства веществ том 1 (1968) -- [ c.621 , c.622 , c.652 , c.865 , c.920 , c.1102 ]




ПОИСК







© 2025 chem21.info Реклама на сайте