Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

величина эффективность разделения

    Можно допустить, что термодинамическое совершенство процесса разделения в реакционно-диффузионных мембранах также окажется функцией величин Ф,, а,/, х и 1Х Аг. Если использовать значения ац и Л1 = Ф,Л,-, то потери эксергии в мембранах такого типа можно вычислить по уравнениям (7.47) и (7.52), эксергетический к. п. д. проницания по соотношениям (7.54) —(7.56), (7.64) и (7.66), приведенные плотности проникшего целевого и суммарного потоков — по уравнениям (7.58), (7.59) и (7.67), состав проникшего потока по выражениям (7.62) и (7.65). Применимость соотношений несопряженного массопереноса для расчета эффективности разделения в реак-ционно-диффузионных мембранах основано на общности подхода, трактующего мембрану в сечении как точечную систему с конечным значением движущей силы на границах, т. е. как черный ящик . При этом предполагается, что перенос компонентов смеси сопряжен только с химической реакцией, взаимно их потоки независимы. [c.249]


    Использование реакций комплексообразования для разделения катионов металлов. В результате взаимодействия катионов металлов с комплексообразующими веществами, особенно анионного характера, изменяются основные характеристики ионов, влияющие на селективность поглощения — знак и величина заряда, структура и размеры ионов, их способность к гидратации и влияние на упорядоченность структуры воды. Эти характеристики можно изменять в широких пределах в зависимости от свойств разделяемых ионов и комплексообразующих реагентов. Комплексообразующие реагенты анионного характера (например, анионы слабых кислот) более перспективны, чем реагенты молекулярного характера (например, амины), так как взаимодействие с последними не изменяет одну из основных характеристик катионов металлов — величину их заряда. Использование реакций комплексообразования позволяет увеличивать разницу в селективности ионообменного поглощения близких по свойствам ионов металлов и вследствие. этого значительно улучшать эффективность разделения. Для ионообменно-хроматографического разделения реакции комплексообразования используют в сс-новном в двух вариантах. [c.198]

    Эффективность очистки газа в циклоне зависит от величины фактора разделения = Л/ /дт, который может быть увеличен как за счет увеличения скорости так и за счет уменьшения радиуса т. [c.418]

    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]

    При замене 2,1 на 2,1 в вышеприведенных выражениях (10), (12), (17) — (19) появляется новая величина А — приведенное время удерживания, отнесенное к мертвому времени,— которая оказывает влияние на разделение. Ниже будет показано, отражает ли эта величина эффективность разделения или разделительное действие или воплощает какую-то другую характеристик ку колонки. [c.41]


    Как известно из теории хроматографии на бумаге, подвижность отдельных веществ характеризуется так называемой величиной Rf, представляющей собой отношение расстояния между центром пятна вещества и стартом (а) к расстоянию между фронтом растворителя и стартом (б) (рис. 16). Величина Rp, таким образом, изменяется в пределах от О до 1. Вещества па старте имеют Rp=Qfi вещества в середине хроматограммы имеют Rp = 0,b, а вещества на фронте растворителя — / р=1,00. Нужно помнить, что величина Rf не является физической константой, если эксперимент не проводится в строго стандартных условиях. В большинстве случаев величина Rp характеризует только подвижность вещества и является величиной эффективности разделения данной хроматографической системы. Именно с этой точки зрения следует [c.73]

    Второй член в уравнении (12) представляет расширение пика, вызванное замедлением обмена вещества между газовой и жидкой фазами. Из уравнения (12) не трудно вывести, что С ш В являются характеристическими величинами эффективности разделения. [c.141]

Рис. 3. Зависимость относительной величины высоты пика ацетона (а), относительной величины эффективности разделения (б), времени элюирования диметилформамида и ацетона (в) от скорости газа-носителя Рис. 3. Зависимость <a href="/info/64862">относительной величины</a> <a href="/info/140927">высоты пика</a> ацетона (а), относительной величины эффективности разделения (б), времени элюирования <a href="/info/11265">диметилформамида</a> и ацетона (в) от <a href="/info/798861">скорости газа</a>-носителя
    В связи с тем, что в дальнейшем изложении будут в основном использоваться данные литературных источников, под величиной эффективности разделения примем наиболее употребляемый в настоящее время параметр, а именно среднее вероятное отклонение по кривой разделения [124]  [c.17]

    Взаимная растворимость компонентов является функцией температуры. Поскольку концентрация насыщенного раствора одного из компонентов в другом с повышением температуры обычно возрастает, то область расслаивания при нагревании будет уменьшаться и может исчезнуть вовсе. Важным выводом из этого, имеющим практическое значение при разделении расслаивающихся систем, является то, что, например, при ректификации по высоте колонны область расслаивания будет изменяться, достигая в отдельных точках максимальной величины. Последнее обстоятельство может быть использовано для повышения эффективности разделения. [c.285]

    Отношение числа теоретических ступеней разделения, приходящихся на 1 м насадки, уд к коэффициенту трения I было принято в качестве базовой величины, не зависящей от критерия Рейнольдса. Эта величина, имеет постоянное значение (0,13) для всех смесей, использованных Дэвидом. Он принимает, что эффективность разделения имеет максимальное значение при верхней предельной скорости паров. Однако в лабораторных колоннах эта скорость не намного превышает ту скорость паров, которая соответствует минимально допустимой нагрузке. Поэтому соотношение [c.174]

    Для оценки эффективности разделения на колонке введено понятие теоретических тарелок. Слой сорбента в колонке условно делится на ряд соприкасающихся узких горизонтальных слоев, каждый из которых и называют теоретической тарелкой. В каждом слое устанавливается равновесие между стационарной и подвижной фазами. Чем больше число теоретических тарелок, тем выше эффективность разделения. Другой величиной, характеризующей эффективность разделения, служит высота, эквивалентная теоретической тарелке, представляющая собой отношение Я = = Ь М, где Ь—длина колонки N — число теоретических тарелок. [c.108]

    Взаимосвязь эффективности разделения и времени может быть выражена отношением остроты разделения S к времени анализа д. Для учета отклонений от оптимальной скорости газа-носителя эту величину умножают на [c.64]

    Мерой эффективности разделения на бумаге является величина, эквивалентная теоретической тарелке, ВЭТТ  [c.212]

    Эффективность колонки и селективность неподвижной фазы. Способность колонки к разделению зависит от ее эффективности и селективности НФ. Эффективность колонки определяется расширением хроматографического пика по мере прохождения вещества через колонку. Она зависит от кинетики процессов в колонке и оценивается ВЭТТ, которая в свою очередь зависит от скорости газа-носителя, процессов диффузии и сопротивления массообмену. Расчет ВЭТТ является наиболее предпочтительной мерой эффективности колонки. Селективность НФ связана с взаимодействием растворенного вещества с растворителем и определяет относительное положение пиков анализируемых веществ на хроматограмме. Мерой селективности колонки является расстояние между максимумами двух пиков чем оно больше, тем селективнее колонка. Количественно селективность данной колонки оценивают величиной коэффициента разделения (а) для данных двух компонентов [c.335]

    Величина коэффициента разделения показывает, что при использовании метода движущегося слоя можно получить этилен чистотой 99% и выше. Известны случаи промышленного применения подобного способа получения этилена. Для эффективного течения процесса необходимо предварительно тщательно осушать газ, так как поглощение воды цеолитом приводит к значительному снижению его активности в отношении этилена. [c.317]


    Оценка эффективности разделения кислот рассмотрена А. Л. Маркманом и Б. А. Кацем [315] на примере отделения насыщенных и олеиновой кислот от линолевой кислоты. Величину селективности S они предложили выражать следующим образом  [c.222]

    Число теоретических ступеней разделения находят, как для бинарных смесей, построением на диаграмме у—х. На оси абсцисс откладывают величины эффективной концентрации. ЛКК в жидкости, а на оси ординат — величины (1/эф)л эф ктивной концентрации того же компонента в паре. [c.508]

    Эффективность разделения в газовой хроматографии зависит от скорости миграции молекул исследуемого соединения через колонку и от распределения компонента между неподвижной и подвижной фазами, т. е. от наклона изотермы или константы распределения. Количественным выражением первого явления служит время удерживания (время элюирования) tr или удерживаемый объем Уг, второго явления — число теоретических тарелок N (безразмерная величина) или высота, эквивалентная теоретической тарелке, Н, мм. Кроме того, большое внимание уделяется изучению факторов и явлений, непосредственно воздействующих на [c.226]

    Ускорение процесса диализа достигается наложением электрического поля (электродиализ), при этом также повышается эффективность разделения, особенно в конце, когда неравенство концентраций ионов по обеим сторонам мембраны становится меньше. Подвергаемый диализу раствор вводят в среднюю из трех камер, где его тщательно перемешивают. Две мембраны отделяют среднюю камеру от боковых камер, в которых расположены электроды. Через боковые камеры непрерывно поступает чистый растворитель. При прекращении перемешивания раствора в средней камере диализатора коллоидные частицы, имеющие собственный заряд или приобретающие заряд в процессе адсорбции ионов, движутся в электрическом поле и накапливаются у одной из мембран, где вследствие увеличения концентрации и плотности опускаются на дно диализатора и могут быть в дальнейшем отделены (процесс электродекантации). При помощи диализа можно разделить небольшие частицы растворов электролитов и частицы коллоидных растворов или высокополимерных веществ. Диализ позволяет определить молекулярный вес соединений и контролировать процессы образования молекулярных ассоциатов, сольватов и т. д. Применяя мембраны соответствующей пористости, можно проводить разделение частиц коллоидных растворов различной величины (ультрафильтрование) [77]. [c.386]

    Наиболее детально изучены процессы формирования фронта зоны и его параллельного переноса вдоль хроматографической колонки. Полученные математические зависимости позволяют рассчитать на основе экспериментально определяемых величин выходные кривые при обмене двух ионов, аналогичные кривой, приведенной на рис. 52. Такие кривые характеризуют ширину фронта зон компонентов и скорость его перемеш,ения, но не дают характеристики ширины самих зон и их расположения в колонке, поэтому на основании таких данных нельзя судить об эффективности разделения двух или нескольких ионов и влиянии на нее различных параметров. [c.181]

    Как показывают уравнения (4) и (5), возможность хроматографического разделения зависит от относительной дисперсии или o/t r и от отношения величин удерживания г2/ г1 или t4r2ltdг Таким образом, разделение компонентов зависит от двух характеристик хроматографической колонки. Одна из них описывает различие во времени удерживания отдельных комио-нентов и называется разделительным действием. Другая характеристика определяет величину размывания за время удерживания, т. е. относительную ширину хроматографического пика, и называется эффективностью разделения. Далее мы обсудим математические выражения, которые дают возможность оценить обе характеристики хроматографических колонок. Прежде всего к таким выражениям можно отнести величины из уравнения (4). С использованием относительно длинных, в особенности капиллярных, колонок стало необходимым применять величины, входящие в уравнение (5), поскольку они лучше учитывают механизм разделения. [c.30]

    ЧИСЛО ТЕОРЕТИЧЕСКИХ ТАРЕЛОК КАК ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ ЭФФЕКТИВНОСТЬ РАЗДЕЛЕНИЯ [c.30]

    А, И тз. С содержат, кроме того, величины, зависящие от природы вещества, например коэффициенты диффузии, то для одной и той же хроматограммы расчет дает разные числа теоретических тарелок для разных компонентов. Зависимость п от природы вещества изображена на рис. 3. Число теоретических тарелок на заполненных колонках незначительно растет с увеличением молекулярного веса веществ одного гомологического ряда или химически родственных веществ . Эффективность разделения для полярных веществ несколько меньше, чем для углеводородов (разумеется, сравнивают вещества, имеющие одинаковое приведенное время удерживания, отнесенное к величине мертвого времени), причем это различие проявляется в еще большей степени при образовании асимметричных хроматографических пиков. [c.32]

    Оценка эффективности разделения проводится с двух различных точек зрения. В более простом случае интересуются лишь оценкой данной колонки, причем в качестве переменных величин рассматривают только внешние усло- [c.32]

    Коэффициент разделения является относительной величиной и не зависит от длины и сечения колонки, давления и в широких пределах от объемной скорости газа-носителя и количества неподвижной фазы. Он изменяется только при изменении температуры. Коэффициент разделения двух определенных веществ является характерной для данной неподвижной фазы величиной. Если в уравнение (10) ввести коэффициент а, то для случая достаточного разделения (рис. 1, б) получают простую зависимость между эффективностью разделения и разделительным действием. Если [c.34]

    Формулы для подсчета числа теоретических тарелок обычно включают величину времени удерживания, определяемого от момента дозирования вещества. Так как коэффициент разделения представляет собой отношение времен удерживания, взаимосвязь эффективности разделения и разделительного действия можно выразить простыми соотношениями. [c.37]

    Итак, приведенное время удерживания, отнесенное к мертвому времени, оказывает лишь косвенное влияние на разделение, а именно через уменьшенные значения эффективности разделения при низких величинах Таким образом, приведенное время удерживания, отнесенное к мертвому времени, не равнозначно с остротой разделения и относительным удерживанием. Простой вид соотношений между и [(35) — (37)1 подтверждает это положение. [c.48]

    Численное значение 2 , а не является абсолютным выражением разделительной способности и зависит от выбора разделяемых веществ. По значениям Й1,2 для одних веществ нельзя рассчитать критерий разделения других веществ, что возможно, нанример, для относительного удерживания. Можно рассматривать 1,2 как довольно произвольную величину, получающуюся путем простой комбинации определяемых по хроматограмме величин. Теоретическое объяснение этой характеристики пока не найдено, но чрезвычайно простая связь с эффективностью разделения и разделительным действием обусловливает ее большое практическое значение. [c.49]

    Согласно рис. 21, нельзя бесконечно увеличивать разделительную способность удлинением хроматографической колонки. При данных условиях разделительная способность (а также эффективность разделения, выраженная с помощью величины разделения И ,,) достигает предельного значения нри длине колонки 200 м. Экстраполяция кривой до 320 м дала бы незначительный рост разделительной способности. Продолжительность анализа, напротив, все еще увеличивается по линейному закону. Принимая во внимание время анализа, не стремятся достигнуть максимальной разделительной способности путем удлинения хроматографической колонки, а останавливаются па той длине, прп которой функция Л = I (Ь) обнаруживает еще заметное увеличение. [c.63]

    Разделительное действие как другая основная характеристика колонки выражается через относительную величину — относительное удерживание г и, следовательно, не зависит непосредственно от времени анализа. Разделительная способность, напротив, должна рассматриваться как величина, отражающая взаимодействие эффективности разделения и разделительного действия с учетом их зависимости от времени. [c.65]

    При помощи 91- или 3-величин разделительную способность хроматографических колонок оценивают с учетом времени анализа. Однако по этим характеристикам нельзя определить, возможно ли одинаковое разделение на тех же колонках за более короткое время. Вопрос о минимально необходимом времени анализа для разделения определенной пары веществ представляет интерес прежде всего потому, что с этим одновременно связан вопрос об оптимальных для решения данной задачи условиях анализа и наименьших затратах. Различные авторы исследовали связь между продолжительностью анализа и свойствами колонки с целью получения самого короткого времени анализа чаще всего в таких исследованиях они исходили из соотношений между разделительной способностью, эффективностью разделения и разделительным действием, приведенных в предыдущем разделе. [c.66]

    При расчетах процессов разделения неоднородных систем обычно исходят из заданной, потребной величины эффективности разделения. Для упрощения расчетов обычно считается, что если в аппарате достоверно уловлена некоторая частица, то уловлены и все частицы крупнее этой. Такое представление позготяет от заданной по условию задачи величины эффективности разделения перейти к размерам частиц, при улавливании которых выполняется условие задачи. Для этого необходимо иметь кривые распределения частиц ао размерам (см. 41). [c.157]

    Корреляция размеров пор, определенных тем и другим методами, очевидна из рис. П-27. Во всех случаях диаметр пор, определенный гидродинамическим методом, меньше полученного по данным электронной микроскопии. Это, по-видимому, объясняется тем, что при измерении диаметра пор гидродинамическим методом на полученный результат оказывает влияние слой авязанной жидкости (см. стр. 203), которая не участвует в течении. Замеренный таким методом диаметр пор, который несколько меньше действительного, можно назвать эффективным , так как именно он и определяет во многом условия разделения раствора. Влияние толщины слоя связанной жидкости для одной и той же системы мембрана — раствор на величину эффективного диаметра будет увеличиваться с уменьшением диаметра поры. Поэтому для мембран с порами малого диаметра (примерно от 30 нм, или 300 А, и ниже) более точным методом определения эффективного диаметра пор является гидродинамический. Полученные результаты подтверждаются данными других авторов [10]. [c.106]

    Так как величина разделения в капиллярных колонках обнаруживает сильную зависимость от приведенного времени удерживания, отнесенного к мертвому времени, оценка эффективности разделения затруднительна. Вооб-ш е говоря, критерий оценки колонки,. зависяш,ий от природы разделяемых веществ, не может быть выражен одним параметром, таким, например, как величина разделения эффективность разделения должна представляться скорее-в виде функциональной зависимости, чем какой-либо конкретной величиной. [c.46]

    Для идеального случая, т. е. когда величина разделения = trlb для всех компонентов одинакова, 2-величину можно определять на любой паре веществ этого ряда. К сожалению, это условие приближенно выполняется лучше всего на заполненных колонках. На капиллярных колонках эффективность разделения и соответственно величина разделения меньше для компонентов с коротким временем удерживания. Это автоматически отражается на -величине. [c.53]

    Член А, так же как в уравнении ван Деемтера, учитывает вихревую диффузию и не зависит от температуры члены В и С, соответствуюш ие JMu и Си, представляют влияние молекулярной диффузии и, следовательно, замедления процесса обмена. Член В несколько увеличивается с повышением температуры. Член С, напротив, уменьшается при повышении температуры колонки вследствие температурных зависимостей коэффициента распределения и диффузии в жидкой фазе. Как правило, для эффективности разделения, отражающей суммарное изменение этих величин, наблюдают минимальное значение величины (-Н щщ) при определенной температуре колонки Topt. Очевидно, оптимальная температура определяется характеристиками хроматографической колонки и различна для каждого исследуемого вещества. По этой причине чем меньше различаются отдельные компоненты по коэффициентам распределения и чем уже область температур кипения пробы, тем легче подобрать оптимальную температуру колонки для всех компонентов анализируемой смеси. При температуре колонки Т > молекулярная диффузия определяет уменьшение эффективности разделения при повышении температуры. При Т < Тощ улучшение эффективности разделения с повышением температуры характерно для колонок с толстой пленкой и высокой вязкостью неподвижной фазы (ср. рис. 17). [c.59]

    Разделительное действие, выраженное относительным удерживанием гептан/гсксап постоянно уменьшается с повышением температуры колонки. Острота разделения (как выражение эффективности разделения) проходит через максимум нри 80°. Разделительная способность, отражающая взаимодействие этих величин, может быть выражена критерием разделения Лгексан/гептан- Максимальное значение критерия разделения (7,5) в соответствии с хроматограммами получено прп i = 60°. [c.61]


Смотреть страницы где упоминается термин величина эффективность разделения: [c.14]    [c.648]    [c.142]    [c.16]    [c.160]    [c.43]    [c.45]    [c.46]    [c.48]    [c.60]   
Руководство по газовой хроматографии (1969) -- [ c.21 , c.32 ]

Руководство по газовой хроматографии (1969) -- [ c.21 , c.32 ]

Руководство по газовой хроматографии (1969) -- [ c.21 , c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте