Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез белка нуклеиновых кислот

    Органическая часть фосфатов этой фракции представлена или промежуточными продуктами обмена (нуклеотиды, фосфорные эфиры сахаров, глицерофосфаты), или запасными веществами (фитин). Значительная часть неорганических фосфатов во франции кислоторастворимого фосфата образуется в процессах синтеза белков, нуклеиновых кислот и углеводов в результате освобождения фосфора из фосфорилированных сахаров, аминокислот, нуклеозидтрифосфатов. [c.27]


    Условием осуществления фотосинтеза является локализация необходимых пигментных, окислительно-восстановительных и ферментных систем в специальных органоидах фотосинтезирующих клеток. В случае растений и водорослей — это хлоропласты, в случае бактерий — хроматофоры. В них, наряду с фотосинтезом, происходит также синтез белков, нуклеиновых кислот, липидов, пигментов и других физиологически активных веществ фотосинтезирующие органоиды обладают известной автономностью в клетке. [c.7]

    Теперь рассмотрим стационарно растущую и синтезирующую клетку, в которую мы подали внезапно на период времени, малый по сравнению с временем генерации, импульс какого-либо радиоактивно меченного компонента среды (это может быть, например, лимитирующая аминокислота). Меченая составная часть вовлекается в процессы синтеза белков, нуклеиновых кислот и т. д. Если время контакта культуры клеток с радиоактивным компонентом велико, то снова достигается стационарное состояние и вещества, синтезируемые клеткой, окажутся равномерно помеченными. Но если время контакта мало, то распределение радиоактивного компонента в веществах клетки станет весьма неравномерным. Таким образом, не нарушая по существу стационарности клеточных синтезов, мы с помощью кратковременного импульса радиоактивности изучаем явление нестационарно и измеряем скорости отдельных парциальных процессов. Таков первый вариант кинетического эксперимента. [c.452]

    Фосфор является очень важным элементом в питательной среде. Он входит в состав АТФ, АДФ, АМФ и обеспечивает нормальное течение энергетического обмена в клетке, а также главнейших биосинтетических процессов, таких, как синтез белков, нуклеиновых кислот, гликолиз, и других важнейших биохимических превращений. Содержание фосфора в биомассе и скорость роста культуры в значительной степени зависят от концентрации фосфора в среде. При недостатке фосфора в среде, особенно в начальной фазе роста микроорганизмов, наблюдаются пониженный уровень накопления биомассы, незначительный прирост липидов, но одновременно с этим клетки обедняются белком и витамином В2, резко снижается интенсивность дыхания и повышается бродильная способность дрожжей, в несколько раз снижает- [c.43]

    Функции ферментов исключительно разнообразны. С ними связаны все превращения живой материи, от них зависит распад одних веществ в организме и образование новых. Переваривание и усвоение пищевых продуктов, прежде всего белков, жиров, углеводов, невозможно без участия ферментных систем. С другой стороны, синтез белков, нуклеиновых кислот, липидов, гормонов и других веществ в организме также представляет собой совокупность ферментативных реакций. Все функциональные проявления живого организма — дыхание, двигательные движения, нервно-психическая деятельность, размножение и т. д. — непосредственно связаны с работой соответствующих ферментных систем. Ферменты ответственны и за такие функции, как транспорт различных веществ и ионов через биологические мембраны. Совокупность ферментативных реакций, строго локализованных в пространстве и происходящих в определенный интервал времени, и составляет существо то(Го, что мы называем жизнедеятельностью, жизнью. Именно в этом глубокий смысл изречения Фридриха Энгельса, приведенного в эпиграфе к этой глав  [c.33]


    Синтез белков, нуклеиновых кислот и многих других органических соединений, например коферментов и хлорофилла [c.280]

    Что же такое метаболиты Метаболиты — это естественно возникающие при разнообразных химических реакциях промежуточные продукты обмена веществ клетки организма (аминокислоты, жирные кислоты, витамины, пурины, пиримидины и др.), которые постоянно вовлекаются в реакции метаболизма, участвуя в синтезе белков, нуклеиновых кислот, антибиотиков и других соединений, или превращаются в иные необходимые для организма продукты. [c.25]

    В настоящее время полностью установлено, что ядро не только оказывает влияние на характер жизнедеятельности цитоплазмы, но и осуществляет контроль за синтезом белка в ней, поскольку скорость синтеза белков, нуклеиновых кислот и ферментов начинает снижаться вскоре после удаления ядра. Ядро, лишенное цитоплазмы, также теряет свою жизнеспособность, следовательно, оба компонента клетки, ядро и цитоплазма, образуют единое целое как обязательные элементы живой растительной клетки. [c.24]

    Включение радиоактивных предшественников широко используют при исследовании синтеза белка, нуклеиновых кислот, липидов и других макромолекул животных [c.338]

    Жизнедеятельность клеток (и естественно, организма) во многом определяется структурой, физиологическими свойствами и функциональным состоянием их мембранных структур. Кроме обеспечения целостности и гетерогенности клетки мембраны принимают участие во всех физио-лого-биохимических процессах. Как справедливо отмечает акад. Е. М. Крепе, мембраны — это арена, на которой разыгрываются важнейшие биохимические, физические и химические процессы. Эти процессы проявляются в транспорте веществ, функционировании ферментативных комплексов, миграции энергии, синтезе белка, нуклеиновых кислот и делении клетки, восприятии энергии внешней среды и трансформации ее в энергию биологического возбуждения, передаче нервного импульса, дыхании, пищеварении, иммунитете, секреторной деятельности, узнавании и взаимодействии клеток и др. [c.9]

    Известно, что высшие животные и многие микроорганизмы не способны синтезировать некоторые органические соединения, являющиеся для них жизненно необходимыми, и должны получать их в готовом виде. Потребности разных видов различны к числу необходимых соединений могут относиться определенные аминокислоты, жирные кислоты, представители гетерогенной по структуре группы веществ, известной под названием витамины, определенные пурины, пиримидины и т. д. Эти необходимые для выживания или для роста соединения либо непосредственно используются организмом при синтезе белков, нуклеиновых кислот (и других соединений), либо трансформируются в необходимые для клеток продукты. Использование необходимых метаболитов зависит от определенных ферментов эти ферменты могут ингибироваться аНтиметаболитами — соединениями, имеющими сходную с метаболитами структуру. [c.266]

    Соматотропный гормон стимулирует рост и развитие тела, увеличивает рост трубчатых костей в длину, усиливает синтез белка, нуклеиновых кислот и гликогена, т. е. проявляет анаболическое действие. Кроме того, он способствует мобилизации жиров из жировой ткани, усиливает их окисление, а также транспорт аминокислот через мембраны. Этот гормон уменьшает скорость окисления углеводов в тканях, что способствует повышению ее уровня в крови. Недостаток соматотропного гормона в раннем возрасте приводит к карликовости без нарушения умственного развития, а избыток — к гигантизму. Если избыток гормона проявляется в юношеском возрасте, то могут несимметрично увеличиваться конечности и подбородок. Возникает заболевание акромегалия. В настоящее время получен синтетический гормон роста, идентичный человеческому, что позволяет успешно лечить больных с нарушением секреции этого гормона СТГ — единственный гормон, который имеет видовую специфичность действия. [c.141]

    Азот, N Нитрат КОз, Аммоний КН4 Синтез белков, нуклеиновых кислот, хлорофилла и других органических соединений Болезни обмена веществ Белковые продукты (мясо, рыба, молоко) [c.48]

    Синтетические процессы в клетках — синтез белков, нуклеиновых кислот, пуринов, пиримидинов, липидов, сахаров и др. представляют собой, как правило, эндергонические процессы, т.е. процессы, требующие затраты свободной энергии. Биосинтез осуществляется в открытой термодинамической системе— клетке в результате сопряжения с экзергоническими процессами гидролиза АТФ и окисления НАД-Н, НАДФ-Н и ферредоксина, в ходе которых освобождается энергия. Б конечном счете восстановленные коферменты также возникают за счет АТФ — наиболее универсального аккумулятора энергии (глюкоза фосфорилируется АТФ). Основные биосинтетические реакции идут с участием ферментов киназ или синтетаз. [c.108]


    В отличие от протеидов других классов простетические группы нуклеопротеидов— нуклеиновые кислоты, или полинуклеотиды, — являются макромолекулярными соединениями. Они имеют сложное строение и дают в результате гидролиза фосфорную кислоту, пентозу и пиримидиновые и пуриновые основания. Строение нуклеиновых кислот будет описано ниже (см. Нуклеиновые кислоты ). В плазме клетки (цитоплазме) было обнаружено также очень большое число шарообразных частиц, называемых микросомами, с молекулярными весами порядка нескольких миллионов, также состоящих из нуклеиновых кислот (рибонуклеиновой кислоты) и белков, В этих микросомах происходит синтез белков. Нуклеиновые кислоты микросомов действуют как матрицы или клише (гены), служащие для синтеза специфичных белков и для своего собственного воспроизведения (Н. Е, Паладе, 1955 г,), В этом синтезе участвуют также и ферменты, связывающие аминокислоты с аденозиимонофосфорпой кислотой (М, Хогланд, 1956 г.). [c.455]

    Заканчивая рассмотрение аминокислотного обмена, следует сказать, что обычно в растениях в свободном состоянии содержится 20—30 различных аминокислот, которые подвергаются непрерывным превращениям используются для синтеза белков, нуклеиновых кислот, алкалоидов и других азотистых веществ, превращаются в безазотистые соединения — органические кислоты, углеводы, жиры. Содержание аминокислот в растениях может резко меняться в зависимости от возраста растений, от ряда внешних условий (температуры, длины дня, увлажнения и т. д.), а также от питания. При этом изменяется ке только концентрация, но и качественный состав аминокислот. Различные внешние воздействия, нарушая течение азотного обмена, часто направляют его по другим путям, что приводит к уменьшению или даже к исчезновению ряда аминокислот, характерных для данного растения, или, наоборот, к повышенпю общего содержания аминокислот, или появлению ряда нехарактерных продуктов азотного обмена. При обычных условиях выращивания количество свободных аминокислот с возрастом растений понижается. В вегетативных органах растений свободных аминокислот обычно больше, чем в репродуктивных, в то время как для белков наблюдается обратная зависимость. При различных условиях минерального питания содержание индивидуальных аминокислот в растениях и соотношение между ими могут быть резко различными. Увеличение общего количества свободных аминокислот в растениях и усиленное накопление отдельных аминокислот наблюдается при пониженном питании растений калием, фосфором, серой, кальцием и магнием, а также при недостатке ряда микроэлементов цинка, меди, марганца, железа. Увеличение содержания аминокислот наблюдалось также при лучших условиях азотного питания. При недостатке молибдена количество свободных аминокислот и амидов в растениях уменьшалось вследствие ослабления восстановления нитратов. В настоящее время проводятся широкие исследования [c.264]

    АДЕНОЗИНТРИФОСФОРНАЯ КИСЛОТА (АТФ). Основное соединение, в котором запасается и переносится энергия, необходимая для осуществления синтетических процессов в обмене веществ, а также для выполнения работы нивыми организмами. В состав АТФ входят остатки аденина, углевода рибозы и три остатка фосфорной кислоты. Энергия, высвобождаемая АТФ, может переноситься почти без потерь на другие соединения или использоваться для синтеза белков, нуклеиновых кислот, углеводов, жиров, витаминов и многих других соединений. Энергия АТФ потребляется также при мышечном сокращении, в нервных клетках и при других видах работы в живых организмах. АТФ в организме образуется из адепозиндифосфорной кислоты (АДФ) и минеральной фосфорной кислоты за счет энергпп, которая выделяется при окислении различных органических веществ в живых клетках или при фотосинтезе за счет световой энергии. Во всех этих процессах энергия, как правило, не теряется, а переходит в особый вид химической энергии, заключенной в фосфатных связях АТФ. При окислении в процессе дыхания грамм-молекулы глюкозы, например, может образоваться до 30 молекул АТФ. [c.14]

    По механизму действия ароматические карбоновые кислоты сходны с алифатическими карбоновыми, а в некоторых случаях — с феноксиуксусными кислотами. Вызывая очень сильные повреждения клеточных мембран и проводящих сосудов, они препятствуют транспорту природных фитогормонов и различных метаболитов. Такая направленность действия сказывается на синтезе белков, нуклеиновых кислот, липидов, на метаболизме уксусной и малоновой кислот. Повреждается тиокиназная система и косвенно — система окислительного фосфорилирования. Некоторые из гербицидов данной группы оказывают противоположное действие. Например, динобен блокирует процесс биосинтеза липидов, а амибен делает его чрезмерно интенсивным, хотя между собой гербициды отличаются только амино- и нитрогруппами. [c.22]

    Характерная особенность производных аденина — их способность влиять на рост растений. Значение аденина обусловлено тем, что он является одним из компонентов нуклеиновых кислот и многих коферментов. Аденнн обладает более выраженными свойствами основания, чем пиримидин, но в то же время адениновое основание слабее имидазола. Поскольку и кислотный характер у аденина выражен сильнее, чем у имидазола, в химических реакциях он может участвовать и как основание, и как кислота. Его биологическая активность возрастает, если к аминогруппе в положении 6 присоединяется слабая кислота. Наиболее известное производное аденина этой группы — кинетин (6-фурфуриламинопурин). По физиологической активности кинетин относится к соединениям, регулирующим рост и развитие растений. Он стимулирует синтез белков, нуклеиновых кислот и соответственно процесс клеточного деления, кроме того, замедляет старение растений. В основе механизма биологической активности кинетина лежит способность усиливать синтез т ранспортной РНК- [c.72]

    За счет метаболизма в клетке осуществляется 1) извлечение энергии из окружающей среды (либо в форме химической энергии органических веществ, либо в форме 1ергии солнечного света) 2) превращение экзогенных веществ в предапественники макррмолекулярных компонентов клетки 3) синтез белков, нуклеиновых кислот, липидов и других клеточных компонентов из их предшественников 4) синтез и разрушение биомолекул, которые необходимы для выполнения специфических функций данной клетки. [c.112]

    Для всех фототрофных бактерий характерно общее свойство в условиях интенсивного роста начальные продукты ассимиляции ими углекислоты и органических соединений используются непосредственно и преимущественно на синтез белков, нуклеиновых кислот и других жизненно важных компонентов клетки. Поэтому среди ранних продуктов бактериального фотосинтеза обнаруживаются в значительном количество аминокислоты, а углеводов синтезируется меньше, чем у растений. Однако какое-то их количество не только как структурных элементов, но и как запасных продуктов может образовываться и в растущих культурах (van Gemerden, 1968а). [c.70]

    Андрогены проявляют высокую активность по отношению к различным тканям организма. Они действуют на хроматин ядра клеток-мишеней и увеличивают скорость синтеза белков, нуклеиновых кислот, структурных липидов и полисахаридов, вызывая анаболический эффект (возникновение положительного азотистого баланса в организме). Причем анаболический эффект у андрогенов выражен заметно сильнее, чем у эстрогенов. Вследствие анаболического эффекта усиливаются процессы наращивания мышечной массы и минерализации костной ткани (на фоне инициируемого андрогенами развития вторичных половых признаков по мужскому типу). Анаболический эффект андрогенов используется для создания и применения синтетических аналогов андрогенов — анаболических стероидов. Наиболее интересными из них являются соединения, обладающие значительным анаболическим действием на фоне ослабленного эндогенного эффекта. В настоящее время вьыснено, что в химическом плане такие вещества являются норстероидами, у которых отсутствует метильная группа при 19-м атоме углерода стеранового кольца. Соотношение анаболической и андрогенной активности у них в 5 —12 раз выше, чем у тестостерона. Однако нельзя забывать, что применение анаболических стероидов может быть опасным для здоровья, так как способно вызвать стойкие продолжительные нарушения в тонком механизме гормональной регуляции. [c.305]

    Фосфор, Р Г идрофосфат НРО/ Дигидрофосфат Н2Р04 Синтез белков, нуклеиновых кислот. Фосфат входит в состав костных тканей и мембран Апатия, нервные расстройства Молоко, рыба [c.48]


Смотреть страницы где упоминается термин Синтез белка нуклеиновых кислот: [c.222]    [c.95]    [c.45]    [c.223]    [c.181]    [c.194]    [c.50]   
Энциклопедия полимеров Том 2 (1974) -- [ c.3 , c.96 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.396 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте