Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллиты тепловое расширение

    Тепловое расширение большинства кристаллов анизотропно и описывается с помощью тензора теплового расширения [13]. При однородном нагревании или охлаждении кристалла тензор термических деформаций [б ] связан с тензором теплового расширения [aij] следующим образом  [c.155]

    Методы структурного анализа моно- и поликристаллов широко используются для решения различных прикладных вопросов установление фазового состава, определение ориентации кристаллов и кристаллических срезов, определение истинных коэффициентов теплового расширения кристаллических веществ, измерение деформаций решетки и внутренних напряжений, анализ дисперсности, определение текстур, контроль процессов отжига и рекристаллизации и т. д.). [c.15]


    Для кубических кристаллов поверхность КТР представляет собой сферу, и тензор теплового расширения [a j] полностью определяется одним КТР. Для одноосных кристаллов поверхность КТР является эллипсоидом вращения с осью вращения вокруг главной оси кристалла, и тензор теплового расширения задается двумя независимыми компонентами. Тензор теплового расширения кристаллов ромбической системы определяется тремя независимыми компонентами, и оси поверхности КТР ориентированы вдоль осей второго порядка. [c.156]

    Коэффициент теплового расширения в интервале температур 20—1000 °С для кристаллов циркона неодинаков ио разным направлениям параллельно удлинению (оси С) 4,4-10 перпендикулярно к удлинению (оси С) 2,2-10 . Циркон устойчив к резкому изменению температуры. [c.243]

    Задачей рентгеновской дилатометрии является измерение теплового расширения кристаллов методами температурной рентгенографии. Несмотря на то, что точность рентгеновских измерений коэффициентов теплового расширения (КТР) кристаллических тел обычно не превосходит 10 ) и существенно ниже точности обычных дилатометрических методов, тем не менее рентгеновская дилатометрия имеет свои несомненные преимущества, обусловившие ее широкое применение в экспериментальных исследованиях. К их числу относятся возможность определения КТР анизотропных кристаллов на поликристаллических образцах и меньшая чувствительность к присутствию в образце макроскопических дефектов. Для некоторых кристаллов рентгеновская дилатометрия является единственным возможным методом определения КТР, [c.153]

    Для кристаллических тел весьма характерно явление анизотропии, сущность которого состоит в том, что кристалл в различных направлениях обладает неодинаковыми свойствами. Такие свойства, как теплопроводность, электрическая проводимость, механическая прочность, коэффициент теплового расширения, скорость растворения и другие свойства в различных направлениях кристалла различны. Например, слюда сравнительно легко разделяется на пластинки только в одном направлении (параллельно поверхности), в других же направлениях разрушение слюды требует гораздо больших усилий. Если из какого-то кристалла (не кубической формы) выточить шар, а затем его нагреть, то шар изменит свою форму и превратится в эллипсоид. Изменение внешней формы тела в данном случае произойдет потому, что коэффициент линейного расширения по различным направлениям кристалла не одинаков. [c.28]


    Приведенные экспериментальные данные относятся к обычно исследуемой в растворе линейной, незамкнутой ДНК. У вирусов, а также в клетках бактерий на некоторых стадиях их развития обнаруживается кольцевая замкнутая форма ДНК. В такой ДНК, представляющей собой обычную двойную спираль, каждая из комплементарных нитей является непрерывной замкнутой на себя. Поэтому полное число оборотов одной нити относительно другой не может меняться ни при каких изменениях условий, сохраняющих целостность сахаро-фосфатного остова обеих нитей. Проведенные исследования показали, что при комнатной температуре двойная спираль кольцевой ДНК закручена как целое в суперспираль (с плотностью один виток суперспирали на 120—300 пар оснований) противоположного знака, т.е. в левую. При нагревании происходит тепловое расширение кристалла ДНК и уменьшение степени закрученности двойной спирали. Это приводит к уменьшению суперспирализации. При дальнейшем нагревании происходит раскручивание двойной спирали и образование суперспирали того же знака (правой). Иными являются и характеристики плавления кольцевой замкнутой ДНК. Температура плавления такой ДНК приблизительно на 20° выше, чем для линейной молекулы (см. рис. 4.6). Это происходит потому, что расплавленные нити в кольцевой молекуле остаются закрученными относительно друг друга и энтропия расплавленного состояния меньше, чем для линейной молекулы. Кроме того, ширина интервала плавления замкнутой кольцевой ДНК в 2—3 раза больше, чем ширина интервала плавления линейной молекулы. [c.75]

    Особенность молекулярных кристаллов состоит также и в том, что внутри молекул, являющихся структурными единицами, действуют обычно прочные ковалентные связи. Поэтому фазовые превращения молекулярных кристаллов плавление, возгонка, полиморфные переходы — происходят, как правило, без разрущения отдельных молекул. Для типичных молекулярных кристаллов характерны низкие температуры плавления, большие коэффициенты теплового расширения, высокая сжимаемость, малая твердость. В обычных условиях большинство молекулярных кристаллов — диэлектрики. Некото зые из них, например органические красители,— полупроводники. [c.138]

    Как увидим ниже, тепловое расширение тел обусловлено ангармоничностью колебаний атомов в кристаллах. [c.147]

    В различных кристаллографических направлениях термическое расширение графита анизотропно. Для кристаллов графита различают два компонента теплового расширения коэффициент тепло-вого расширения в направлении гексагональной оси щ ) и в на- [c.33]

    Тепловое расширение полимерных кристаллов анизотропно [c.366]

    Напряжения в кристалле создаются в стадии охлаждения также из-за большой (в 2,5 раза) разности коэффициентов теплового расширения кристалла и лодочки. В связи с сильным сцеплением кристалла с лодочкой первый при охлаждении испытывает растягивающие усилия. Уменьшению величины этих усилий на единицу площади способствует увеличение объема кристалла и уменьшение толщины молибденового листа, идущего на изготовление лодочек. [c.179]

    Усилению напряжений способствуют различия в коэффициентах термического расширения молибденового контейнера и кристалла, а также неравномерность его охлаждения за счет теплоотвода через контейнер и сквозь массу прозрачного для инфракрасных лучей кристалла. Неравномерность распределения температур по кристаллу вызывает неодинаковое тепловое расширение различных его участков, их упругое взаимодействие и, как следствие, возникновение в кристалле напряжений. Неравномерность температурного поля при выращивании кристаллов методом ГНК исследовалась при синтезе рубина и лейкосапфира [5]. Оказалось, что вблизи фронта кристаллизации температурный градиент в кристалле составляет 6—7 К/см, В пяти сантиметрах от фронта кристаллизации температурный градиент возрастает до 19—21 К/см и остается постоянным на протяжении 10 см. Общий перепад температур достигает 250 К. Вероятно, эта цифра действительна и для монокристаллов граната, выращиваемых методом ГНК. [c.184]

    Разность плотностей в растворе образуется благодаря разности температур или концентраций или той и иной вместе. Повышение температуры ведет к уменьшению плотности, повышение концентрации, как правило, к ее увеличению. Поэтому совместное изменение tue, что происходит при одновременном повышении температуры раствора и растворении в нем вещества, может приводить в разных случаях к тому или к другому результату. Поэтому же имеется два разных варианта конвективного переноса вещества для роста кристалла, в зависимости от преобладания одного из двух названных факторов. Здесь описывается метод переноса вещества за счет тепловой конвекции, т. е. тот случай, когда ведущим является уменьшение плотности за счет теплового расширения жидкости. В нижней части кристаллизатора (рис. 3-9) располагается вещество для подпитки (шихта), а в верхней — кристалл, и создается температурный перепад с более высокой температурой в нижней части. Шихта растворяется, и вещество вследствие тепловой конвекции переносится в более холодную часть, где раствор переохлаждается и отдает избыточное вещество растущему кристаллу, после чего возвращается в зону растворения. [c.100]


    Другой довольно обычной причиной появления напряжений бывает захват кристаллом твердых включений и обрастание кристаллом твердого кристаллоносца, особенно в условиях, когда коэффициент теплового расширения кристалла существенно отличается от коэффициента расширения включаемого тела. При этом кристалл, захвативший при высокой температуре такое тело, что уже привело к возникновению кристаллизационного давления, во время снижения температуры вследствие указанной разницы коэффициентов расширения становится напряженным в районе включения в еще большей степени. Эта причина, естественно, тем чаще вступает в действие, чем выше температура, при которой происходил захват, и чем ниже температура, при которой используется кристалл. Напряжения такого типа должны довольно часто встречаться в природных кристаллах. Кроме того, напряжения могут возникать около твердого кристаллоносца при вибрациях последнего ( 4.6). [c.127]

    Строение кристаллов изотопные эффекты, тепловое расширение. [c.432]

    Температурная зависимость частот внешних колебаний включает в себя эффект объемного расширения кристалла. Это обстоятельство неоднократно пытались учесть, используя в расчете компоненты тензора теплового расширения и рентгеноструктурные данные, полученные при разных температурах.. [c.166]

    Число независимых компонент тензора теплового расширения [ац определяется сингонией кристалла и равно единице для кубических кристаллов, двум — для одноосных (тетрагональных и гексагональных) и трем — для ромбических кристаллов. Для определения тензора теплового расширения, кроме трех главных КТР, необходимо задать ориентацию главных осей. В общем случае принято представлять тензор теплового расширения характеристической поверхностью второго порядка aijx xj = 1, радиусы-векторы которой равны абсолютным значениям КТР по соответствующим направлениям. Конфигурация этой поверхности зависит от знаков главных КТР, а ее симметрия определяется симмет- [c.155]

    Результаты рентгенодилатометрических измерений замещенного ортоферрита представлены на рис. VHI.4, а в форме температурных зависимостей параметров элементарной ячейки кристалла. Из приведенного рисунка видно, что тепловое расширение исследуемого кристалла происходит немонотонно по всем трем главным осям, а в двух температурных интервалах (вблизи 140° и 168—178 °К) в ходе кривых наблюдаются аномалии. [c.157]

    Структурный фазовый переход и тепловое расширение в кристаллах дигидрофосфата калия КН2РО4 [15]. Кристаллы дигидрофосфата калия КН2РО4 (КВР) принадлежат большому классу одноосных сегнетоэлектриков, нашедших широкое применение в радиоэлектронной промышленности. Возможность широко варьировать состав этих кристаллов путем изоморфного замещения атомов калия атомами рубидия, цезия и других элементов, а также замещения атомов водорода атомами дейтерия, позволяет существенно изменять их физические характеристики, такие, как температура Кюри Гк, величина спонтанной поляризации и т. п. [c.158]

    Исследование теплового расширения дейтерированных кристаллов дигидрофосфата рубидия (RDP — DRDP) показало, что фазовой переход в кристаллах RbHjPOi происходит нри темпера- [c.160]

    Аномальное, увеличение объема элементарных ячеек кристаллов KDP и DRDP в полярной фазе обусловлено тем, что в нормальное тепловое расширение вносит свой вклад расширение, вызванное спонтанной поляризацией кристалла. На рис. VIH.8 показано, что зависимость аномального увеличения объема элементарной ячейки кристалла RDP от температуры (а) и соответствующая температурная зависимость величины спонтанной поляризации Ps (б) аналогичны. По мере удаления от температуры [c.161]

    Кристаллическое состояние вещества. Один из основных нризнаков кристаллического состояния вещества заключается в наличии анизотропии, сущность которой состоит в том, что кристалл в различных направлениях обладает неодинаковыми свойствами (векториальность в свойствах кристаллов). Сюда, в частности, относятся такие свойства, как твердость, тепло- и электропроводность, коэффициент теплового расширения. Например, если из какого-нибудь кристалла путем шлифования изготовить шар, а затем его нагревать, то при этом сферическая форма тела перейдет в эллиптическую— образуется эллипсоид. Подобное изменение внешней формы тела является результатом того, что коэффициент линейного расширения кристалла в одном направлении имеет одну величину, а в другом — иную. Неодинаковы также механические (в частности, упругие) оптические и другие свойства . Аморфные же тела и з о-тропны , их свойства одинаковы в любом направлении внутри данного тела. [c.112]

    Суждения о характере дефектов в кристалле в большой степени осяо вываются на экспериментальных данных о числах переноса для катионов и анионов (также используются данные о тепловом расширении кристаллов, рентгенографические данные и др.). [c.335]

    Все благородные газы и многие молекулярные вещества с простыми симметричными молекулами кристаллизуются в молекулярных решетках с плотнейшей упаковкой. Это указывает на то, что для межмолекулярпых связей характерны ненасыщенность и нена-правленность. В молекулярных кристаллах из несимметричных молекул структура может быть более рыхлой (приспособленной к асимметрии молекул), но все же определяющим здесь выступает геометрический фактор, а не природа составляющих частиц. Структуры молекулярных кристаллов относятся к гетеродеслшческим в них сосуществуют два типа связи — внутри молекул и между молекулами. Связи, действующие между молекулами, намного слабее, чем межатомные внутри молекул. Поэтому именно мел<мо-лекулярные силы в первую очередь определяют многие физические свойства веществ (температуры плавления, твердость, плотность, тепловое расширение и др.). Низкие температуры плавления, высокая летучесть, малая твердость, незначительная плотность и высокий коэффициент теплового расширения — все это свидетельствует о слабости ван-дер-ваальсовой связи. Оценку величины энергии межмолекулярного взаимодействия можно получить, исходя пз экспериментальных данных по теплотам сублимации молекулярных [c.136]

    На рис. 43 приведены температурные зависимости коэффициентов линейного расширения высокосовершенного пиролитического графита марки УПВ-1Т, рассматриваемого как квазимонокристалл, которые дают представления об изменении а монокристалла. Аналогичным образом изменяются коэффициенты термического расширения кристаллов природного и пиролитического графита марки УПВ. Такой характер линейного расширения монокристалла и близких к нему материалов обусловлен тем, что у графита упругая константа 5зз >5,1, т.е. кристаллическая решетка может легко растягиваться в направлении оси с. При этом в поперечном направлении происходит сжатие, пропорциональное 513- При низких температурах эффект поперечного сжатия преобладает над тепловым расширением слоев, и коэффициент сид отрицателен. При температуре около 400 °С эти эффекты взаимно компенсируют друг друга. Выше указанной температуры тепловое расширение слоев [c.98]

    Расположение молекул в М- к. определяется принципом плотной упаковки. Для типичных М. к. характерны низкие т-ры плавления, большие коэф. теплового расширения, высокая сжимаемость, малая твердость. Большинство М. к. при комнатной т-ре — диэлектрики. Нек-рые М. к. (напр,, орг. красители) проявляют тюлупроводниковые св-ва, Китайгородский А. И., Молекулярные кристаллы, М., 1971. П. М. Зоркий. [c.348]

    В молекулярных кристаллах можно выделить два типа сил внутримолекулярные силы и силы между молекулами. Последними силами как раз являются остаточные связи. Как правило, эти силы намного слабее, чем внутримолекулярные, но в то же время именно ими определяются многие важные физические свойства таких кристаллов (температура плавления, твердость, тепловое расширение и др). Низкие температуры плавления молекулярных кристаллов, их малая твердость и значительное тепловое расширение свидетельствуют о чрезвычайной слабости Ван-дер-Ваальсовых сил по сравнению с силами других типов связи. О сравнительной величине остаточной связи по сравнению с внутримолекулярной можно судить по теплота сублимации молекулярного кристалла и эиергии диссоциации соответствующих молекул (следует, однатш, отметить, что внутримолекулярные силы обычно исследуются у вещества в жидкой или газообразной фазе, но это мало влияет на оценочный результат). Так, у молекулярного водорода в твердой фазе теплота сублимации равна 0,5 ккал1моль, а энергия диссоциация молекулы водорода составляет около 100 ккал1молъ, т. е. намного больше. [c.206]

    Тепловое расширение анизотропного твердого тела (кристалла) может быть описано симметричным тензором второго порядка (тензором теплового расширения), компонентами которого являются температурные коэффициенты линейного расширения в определенных направлениях. Если структура тела известна, то для задания тензора достаточно указать три главных температурных коэффициента расширения а1, аг, Од соответственно вдоль главной оси симметрии кристалла, перпендикулярно к глгвной оси в плоскости осей симметрии и в направлении, перпендикулярном к двум первым. В крисгаллах одноосной симметрии аа= а , а направление, определяющее аа, перпендикулярно к главной оси симметрии и лежит в произвольной плоскости, проходящей через нее. Температурный коэффициент линейного расширения в произвольном направлении а., выражается через главные коэффициенты  [c.110]

    Указал (1814) состав многих соединений щелочных и щелочноземельных металлов, метана, этилового спирта, этилена. Первым обратил внимание на аналогию в свойствах азота, фосфора, мышьяка и сурьмы — химических элементов, составивших впоследствии главную подгруппу пятой группы периодической системы. Результаты работ Авогадро по молекулярной теории были признаны лишь в 1860 на I Международном конгрессе химиков в Карлсруэ. В 1820—1840 занимался электрохимией, изучал тепловое расширение тел, теплоемкости и атомные объемы при этом получил выводы, которые координируются с результатами исследований Д. И. Менделеева по удельным объемам тел и современными представлениями о строении вещества. Издал труд Физика весовых тел, или же трактат об общей конструкции тел (т. 1—4, 1837—1841), в котором, в частности, намечены пути к представлениям о нестехиомет-ричности твердых тел и о зависимости свойств кристаллов от их геометрии. [22, 23, 32, 113, 126, [c.10]


Смотреть страницы где упоминается термин Кристаллиты тепловое расширение: [c.153]    [c.156]    [c.160]    [c.100]    [c.211]    [c.222]    [c.211]    [c.222]    [c.101]    [c.47]    [c.100]    [c.184]    [c.47]    [c.326]    [c.42]    [c.549]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.7 , c.59 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 ]




ПОИСК





Смотрите так же термины и статьи:

Расширение тепловее

Тепловое расширение кристаллов



© 2025 chem21.info Реклама на сайте