Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна природные текстильные

    Если посмотреть под микроскопом волокна главных природных текстильных материалов — хлопка, шерсти и натурального шелка,  [c.312]

    ВОЛНОВАЯ ФУНКЦИЯ, см. Квантовая механика. ВОЛОКНА ПРИРОДНЫЕ (натуральные текстильные волокна), образующиеся в прир. условиях прочные и гибкие тела малых поперечных размеров и ограниченной длины, пригодные для изготовления пряжи или непосредственно текстильных изделий (напр., нетканых). Одиночные волокна (В.), не делящиеся в продольном направлении без разрушения, наз. элементарными (В. большой длины-элементарными нитями) неск. В., продольно скрепленных (напр., склеенных) между собой, наз. техническими. По происхождению, к-рое определяет и хим. состав В., различают В. растительного, животного и минер, происхождения (см. табл.). [c.412]


    В процессе превращения в вискозное волокно природная целлюлоза многократно подвергается воздействию концентрированных растворов различных реагентов. В результате этого происходит разрыв части глюкозидных связей и снижение молекулярной массы целлюлозы. Средняя степень полимеризации целлюлозы в вискозных волокнах составляет 300—800. Как и в природных целлюлозных волокнах макромолекулы целлюлозы в вискозном волокне образуют надмолекулярные комплексы, состоящие из микрофибрилл и фибрилл. Вдоль лент микрофибрилл чередуются участки с различной кристалличностью и плотностью упаковки макромолекул. Степень кристалличности обычных текстильных вискозных волокон составляет по рентгеноскопическим данным 40—50%. [c.22]

    Структура и свойства. Очищенная от примесей Ц.— белое волокнистое вещество фибриллярной капиллярнопористой структуры размеры волокон определяют их практич. использование — длинные (>20 мм) применяют как текстильные волокна (см. Волокна природные), короткие (<3 мм) — для производства бумаги, картона и химич. переработки. [c.427]

    Если посмотреть под микроскопом волокна главных природных текстильных материалов — хлопка, шерсти и натурального шелка, го обращает на себя внимание различие между первыми двумя и шелком. Волокна хлопка и шерсти имеют мохнатую поверхность, у них во все стороны торчат короткие ворсинки. Волокна шелка — более гладкие, отсюда блеск и плотность шелковых тканей. [c.390]

    С давних времен люди носят одежду из естественных (природных) текстильных волокон—шерсти, шелка, льна, хлопка. Ассортимент текстильных материалов значительно расширился, когда три-четыре десятилетия назад были созданы процессы получения волокон химическим путем. Эти волокна назвали химическими. Существует два типа химических волокон — искусственные и синтетические. [c.245]

    Искусственные и, особенно, синтетические волокна не являются суррогатами природных текстильных волокон. Для различных целей и, в частности, для электрической изоляции многие из искусственных волокон являются не только полноценным материалом, но и обладают повышенными по сравнению с природными волокнами свойствами. [c.7]

    Химические волокна не являются суррогатом природных текстильных волокон, как их считали ранее. Результаты, достигнутые в последние годы в области улучшения качества химических волокон, дают все основания рассматривать их как полноценные текстильные волокна. Они имеют свои преимущества и недостатки по сравнению с различными видами природных волокон и соответственно свои области применения. [c.23]


    Производство волокнистых полимерных материалов, объединяемых условным термином химические волокна , началось давно. Например, производство вискозных волокон существует около 80 лет. До тех пор пока химические волокна лишь заменяли природное текстильное сырье и исходным материалом для них служила главным образом целлюлоза, вопрос об общности этого производства с другими видами технологии полимеров не имел принципиального значения. В некоторых случаях и на отдельных этапах развития промышленности химических волокон ее рассматривали как часть текстильной промышленности. С появлением новых видов исходных материалов для производства волокон, особенно [c.12]

    Устойчивость текстильных материалов к светопогоде определяют с помощью везерометров. На приборах искусственно создаются условия, которые приближаются к природным климатическим, но воздействуют на волокно интенсивнее. Текстильные материалы могут подвергаться воздействию ультрафиолетовых и инфракрасных лучей, повышенной температуры, орошаться водой или растворами различного химического состава и обдуваться ветром. Для создания искусственных климатических условий в испытательной камере прибора имеются инфракрасные лампы ЗС-3, ртутно-кварцевые лампы ПРК-2, устройства для поддержа ния постоянной относительной влажности воздуха и температуры, программное управление для периодического дождевания, подогревания и обдувания ветром. Выбор режима испытания зависит от поставленной задачи. Определение устойчивости химических волокон к светопогоде на везерометре АВК-2 производится по методике, разработанной ВНИИВом. [c.66]

    Волокнами называют материалы, частицы которых представляют гибкие и прочные тела с длиной многократно превышающей размеры поперечного сечения, пригодные для изготовления пряжи и текстильных изделий. По происхождению волокна делятся на природные (натуральные) и химические. [c.406]

    Вследствие своей высокой реакционной способности окись этилена может конденсироваться со спиртовыми гидроксильными группами, присутствующими в некоторых природных и синтетических высокомолекулярных соединениях. Волокна естественной целлюлозы или ее эфиров, обработанные в водных растворах щелочей окисью этилена, становятся полупрозрачными, причем степень прозрачности зависит от числа гидроксильных групп, вступивших в реакцию с окисью [17]. Оксиэтилцеллюлозу производят в настоящее время в промышленном масштабе и выпускают в продажу в виде 8—10%-ного водного раствора. Ее применяют для шлихтования текстильной пряжи, проклеивания бумаги, в качестве добавки к печатным краскам [c.362]

    Полимерные волокна отличаются тем, что исходные полимеры в них находятся в ориентированном состоянии в результате сильной вытяжки. Большинство волокнообразующих полимеров находится в кристаллическом состоянии и характеризуется сильными межмолекулярными взаимодействиями. Температуры плавления этих полимеров 100—300° С. Природные и синтетические волокна являются основой для создания текстильных материалов и изделий. [c.11]

    Большую роль играет химия и в создании материальных ценностей, в частности товаров широкого потребления (одежда, обувь и т.п.). На основе достижений химии созданы искусственные и синтетические волокна, которые по своим свойствам зачастую превосходят природные. Выпуск полимеров в СССР к 1985 г. достиг более чем 6 млн. т. Доля хил ческих волокон в текстильной промышленности составляет 30%, полимерных искусственных материалов как сырья для кожевенно-обувной и галантерейной промышленности— более 50%. [c.5]

    Лучше всего изучены химические свойства природных высокомолекулярных соединений (целлюлозы, крахмала, белков), которые были известны за много десятков лет до появления синтетических полимеров. Наибольшее внимание уделялось химическим превращениям целлюлозы, обладающей ценными техническими свойствами и являющейся наиболее широко распространенным природным органическим полимером. Путем химических превращений целлюлозы получают ацетаты целлюлозы, применяемые для производства волокна, лаков, пленок, пластмасс нитраты целлюлозы для производства пластмасс, пленок, лаков и бездымного пороха многочисленные простые эфиры целлюлозы, имеющие весьма разнообразное применение для производства лаков, пленок, электроизоляционных материалов, в качестве отделочных средств в текстильной промышленности, а также присадок при бурении нефтяных скважин. [c.210]

    Природными дисперсными системами являются почва, облака, туман, пыль. Продукты питания (хлеб, молоко, мясо, масло, маргарин и др.), текстильные ткани, искусственные волокна, каучук, резина, кожа, бумага, синтетические смолы, лекарственные вещества, мыло, строительные материалы, краски представляют собой разнообразные дисперсные системы или являются высокомолекулярными соединениями. [c.334]


    ПАВ необходимы в текстильной промышленности на многих стадиях производства — от получения сырого волокна до конечного изделия. В процессе подготовки к прядению природные волокна промываются от природных масел и загрязнений. Как правило, синтетические волокна не требуют подобной промывки, однако в них имеются масла, используемые при прядении для смазки. Эти масла удаляются дальнейшей промывкой (перед окраской или печатью). Все средства, используемые для промывки, включают в себя ПАВ, которые содержатся также в получаемых тканях (они придают им мягкость и антистатические свойства). [c.107]

    Текстильные волокна независимо от их происхождения состоят из высокомолекулярных соединений — полимеров. Молекулярная масса природных волокнообразующих полимеров составляет от 100—200 тыс. до 1—2 млн. У химических волокон она колеблется от 15—20 тыс. до 200—300 тыс. Эти значения являются среднестатистическими, так как все высокомолекуляр- [c.7]

    Полипропиленовые волокна характеризуются достаточно высокой прочностью, которая не изменяется при погружении волокна в воду. По эластичности эти волокна мало уступают полиамидным и превосходят большинство других синтетических волокон. Полипропиленовое волокно самое легкое из всех химических и природных волокон. Это волокно не поглощает влагу его кондиционная влажность практически равна нулю. Волокно сильно электризуется. Эти свойства полипропиленовых волокон затрудняют их крашение и переработку в текстильной и трикотажной промышленности. Крашение этих волокон обычно проводят путем введения пигментов и красителей в расплавленный полимер перед формованием. [c.33]

    Фиксация красителей, т. е. процесс переноса их из слоя печатной краски в волокно и взаимодействия с макромолекулами волокнообразующего полимера, традиционно осуществляется в среде водяного пара путем длительной (от 10 до 60 мин) обработки напечатанной ткани в запарных аппаратах непрерывного или периодического действия. В последнее время начали развиваться принципиально новые приемы и способы фиксирования красителей различных классов на текстильных материалах из природных и химических волокон. Из них в первую очередь следует назвать высокотемпературные способы фиксирования [c.68]

    Синтетические волокна благодаря высокой прочности, эластичности, устойчивости к действию химических реагентов и микроорганизмов позволяют повысить качество, надежность, долговечность текстильных изделий. В то же время природные волокна сообщают тканям из смеси волокон высокие санитарно-гигиенические и сорбционные свойства, позволяют компенсировать повышенную гидрофобность синтетических волокон. Таким образом, текстильные изделия из смеси природных и синтетических волокон сочетают в себе ценные свойства этих волокон, отличаются хорошими эксплуатационными свойствами, обогащают и расширяют ассортимент продукции текстильной промышленности. [c.170]

    Природные и регенерированные целлюлозные волокна составляют более Vg мирового производства химических волокон. Они используются для производства текстильных изделий, предназначенных для изготовления одежды, а также для хозяйственных и технических целей. Хлопковая целлюлоза даже в развитых странах все еще является главным текстильным сырьем. Хотя в последние годы ее доля в общем объеме производимых в США текстильных материалов снизилась, тем не менее ежегодно потребляется около 1,8-IO т хлопка. [c.223]

    Очень часто желателен хороший контакт между жидкостью — обычно водой или водным раствором — и поверхностью, покрытой маслом, жиром или воском, приведем несколько примеров. При распылении растворов инсектицидов требуется, чтобы распыляемая жидкость смачивала вощеную поверхность листьев или хитиновый покров насекомых средства для мытья домашних животных должны смачивать их жирную шерсть чернила должны смачивать бумагу при отмывке текстильных волокон сначала удаляют нежелательные природные масла и затем волокна пропитывают соответствующими составами для слеживания пыли и порошков (например, в угольных шахтах) жидкость должна хорошо смачивать их частицы. [c.367]

    Известно, что текстильные волокна находят широкое применение в технике до 25% всей текстильной продукции идет на технические нужды. Одна тонна химического волокна, примененного в области техники, по долговечности работы заменяет 2—4 т природных волокон. [c.195]

    ВОЗМУЩЕНИИ ТЕОРИЯ, метод приближенного решения многих уравнений движения, в частности уравн ния Шредингера, в к-ром волновые ф-ции данной системы представляют через известные волновые ф-ции к.-л. модельной системы, близкой к данной. Если известны все решения ур-ния Шредингера для задачи с гамильтонианом Но, то В. т. позволяет явным образом определить энергии и волновые ф-ции системы с гамильтонианом Н при не слишком большом различии операторов Н я На (т. н. возмущении оператора На). В. т. широко использ. при изучении строения молекул в межмол. взаимодействий. Напр., в рамках полуэмпирич. варианта метода мол. орбита-лей (см. Полуэмпирические методы) В. т. примен. для качеств. описания изменений хим. св-в соединений с изменением их строения (метод возмущенных мол. орбиталей). ВОЛОКНА ПРИРОДНЫЕ (натур, волокна), образующиеся в прир. условиях протяженные гибкие и прочные тела огранич. длины и малых поперечных размеров, пригодные для изготовления пряжи и текстильных изделий. Волокна (В.) растит, происхождения формируются на пов-сти семян (хлопок), в стеблях растений (лубяные В.— лен, джут, пенька и др.), в оболочках плодов (напр., койр орехов кокосовой пальмы). Наиб, важное В. этого типа — хлотсовое, обладающее хоропгами мех. св-вами, износоустойчивостью, термостабильностыо, умеренной гигроскопичностью. К животным В, относятся шерсть и шелк, к минеральным — асбест. Шерсть характеризуется невысокой прочностью, большой эластичностью, высокой гигроскопичностью, низкой теплопроводностью шелк (получаемый в виде В. большой длины) — высокими прочностью, эластичностью, гигроскопичностью, легкой накрашиваемостью асбест — очень высокой прочностью, хорошими диэлектрич. св-вами, огне- и хим-стойкостью, низкой теплопроводностью. [c.105]

    Искусственная шерсть. Одним из видов искусственного волокна, имеющим большое значение в наши дин, является так называе. гая искусственная шерсть (Zellwolle). Ее. получают из тех же соединений целлюлозы, что и искусственный шелк, т.е. нз вискозы, медно-аммиачных растворов клетчатки и ацетилиеллюлозы. Однако, в отличие от описанных выше способов производства искусственного шелка, когда получаемая нить может быть непосредственно использована для изгстовления тканей и трикотажных изделий, при производстве искусственной шерсти волокно сначала разрезают на короткие отрезки затем измельченное волокно (после предварительной очистки и отбелки) перерабатывают на пряжу совершенно так же, как это делается в текстильной промышленности. Часто это искусственное волокно подвергают еше дополнительному кручению. Процесс прядения коротких нитей искусственного целлюлозного волокна и выработки из иих пряжи аналогично получению шерстяной или хлопчатобумажной пряжи при переработке природного волокнистого сырья. [c.465]

    КАМЕДИ (гумми) — вещества или смеси веществ углеводного характера, об-лад1ющие свойством набухать и образовывать вязкие растворы или дисперсии. К. выделяются из растений при механическом повреждении их или заболевании. К К- относятся также модификации природных полисахаридов, например, крахмала, клетчатки (аравийская К.., или гуммиарабик агар-агар и др.). Синтетические К- получают введением остатков серной кислоты и различных групп в амилозу и другие полисахариды. К. применяют в пищевой, бумажной, текстильной, фармацевтической, горнодобывающей и других отраслях промышленности как клеи, стабилизаторы, для образования вязких растворов, искусственного волокна, пленок, наполнителей, взрывчатых веществ и др. [c.117]

    Полиамиды используются главным образом как текстильные волокна, часто в комбинации с природны/ми волокнами. Эти волокна особенно прославились в качестве материала для изготовления женских чулок, производство которых было начато в США уже в 1939 г., но достигло больших масштабов только после второй мировой войны. Из полиамидов вырабатывают также нити для вязания, канаты, парашюты, шестеренки и т. д. Полиамиды растворяются в муравьиной кислоте и фенолах, а при повышении температуры — и в уксусной кислоте. Торговые названия силон (ЧССР), хемлон (ЧССР), найлон, перлон, дедерон. [c.292]

    Глубокое знание химии совершенно необходимо специалистам всех отраслей народного хозяйства. Так, в металлургии и машиностроении необходимы, в первую очередь, знания свойств д етал-лов и сплавов, способов защиты от коррозии. В электротехнической и радиотехнической промышленности, кроме металлов, широко используют полупроводники, керамику, органические изо-лируюнше материалы. В основе производства цемента, стекла, керамики лежат химические превращения соединений кремния. Текстильная промышленность в настоящее время использует не только природные, но и синтетические волокна, а также красители и многие другие химические препараты, облагораживающие ткани. Вся пищевая промышленность по существу основана на химической переработке растительного и животного [c.354]

    Только немногие отрасли промышленности перерабатыват высокомолекулярные природные материалы без применения каких-либо химико-технологических процессов, методами чисто механической технологии. Такова, например, деревообделочная промышленность. Гораздо многочисленнее отрасли промышленности, где при переработке природных высокомолекулярных материалов сочетаются процессы меха-чической и химической технологии. При этом, например, в производстве хлопчатобумажных, шерстяных и льняных текстильных волокон, натурального шелка, в меховой и кожевенной промышленности преобладают процессы механической технологии, однако для выпуска готового изделия необходимо проведение и таких важных химико-технологических процессов, как крашение волокон, тканей, меха, окраска и дубление кожи и т. д. В целлюлозно-бумажной промышленности, частично в резиновой (на основе натурального каучука), в производстве эфироцеллюлозных пластических масс, кинопленки, искусственного волокна, наоборот, преобладают химико-технологические процессы обработки. [c.18]

    Хорошая совместимость с разнообразными компонентами и моющими средствами, экономичность производства обусловили широкое применение этого продукта в процессах отбелки различных природных и синтетических волокон. Он проявляет высокую стойкость к окислению, а следовательно, не окрашивается при длительном хранении. Устойчивость протиу действия окислителей, например гипохлорита натрия, позволяет применять добавку 0,03% додецилбензолсульфоната для более полного проникновения отбеливающих растворов и более интенсивной отбелки текстильных товаров. Применение этого продукта в количестве около 0,25% в сочетании с трина-трийпнрофосфатом при варке вискозного волокна обеспечивает полное и равномерное удаление шлихты и масел. Додецилбензолсульфонат также весьма эффективен и в других разнообразнейших областях. [c.401]

    Переплетение интересов и взаимное влияние этих двух отраслей народного хозяйства можно проиллюстрировать на ряде примеров. Создание анилинокрасочниками в 1956 г. активных красителей привело к коренной перестройке взглядов на химизм процессов взаимодействия красителей с текстильными волокнами и к развитию принципиально новых процессов крашения и печатания текстильных материалов. В частности, появились и ныне получили широкое распространение термические способы крашения и печатания. Для успешной промышленной реализации этих процессов в настоящее время разрабатываются новая технология и более совершенное оборудование. Кроме того, широкое внедрение в текстильное производство волокон из синтетических полимеров существенно изменило ассортимент красителей, выпускаемых анилинокрасочной промышленностью. Появились новые типы дисперсных, катионных и специальных активных красителей. Некоторые из них способны взаимодействовать как с природными, так и с синтетическими волокнами, что открывает новые возможности при крашении и печатании текстильных материалов из смеси таких волокон. [c.5]

    К химическим волокнам относятся искусственные и синтетические волокна. Искусственные волокна получают на химических предприятиях, но из природного сырья как органического (целлюлоза), так и неорганического (соединения кремния, металлы, их сплавы) происхождения. Химические волокна производят из синтетических полимеров полиамидов, полиэфиров, гюлиакрилонитрилов, полиолефинов и др. Наиболее распространенным искусственным волокном является вискозное. В эту же группу входят медноаммиачное и ацетатные волокна. Вискозное и медноаммиачное волокна, состоящие из гидратцеллюлозы, часто называют также гидратцеллюлозными. Искусственные неорганические волокна находят ограниченное применение для изготовления текстильных материалов бытового назначения. Из группы синтетических волокон в наибольших масштабах используются полиамидные (капрон, найлон), полиэфирные (лавсан, терилен) и полиакрилонитрильные (нитрон, орлон) волокна. В дальнейшем в сырьевом балансе текстильной промышленности займут достойное место такие синтетические волокна, как, например, полиолефиновые (полипропиленовое), полихлорвини-ловые (хлорин), поливинилспиртовые (винол). [c.7]

    Волокнистый материал — гибкие тела природного и синтетического происхождения, перерабатываемые в текстильную пряжу или изделия. Подразделяются на две основные группы ограниченные по длине волокна и неограниченные по длине мононнти. [c.586]

    Обзор Куба та [1155] посвящен веществам, используемым для увеличения мягкости бумаги действие одной группы таких веществ обусловлено разрывом Н-связей между волокнами. Херст [933] рассмотрел вопрос о применении различных природных смол для пропитки бумаги (и текстильных изделий) и кратко обсудил механизм адгезии. Поскольку многие клеи и смолы содержат те же растительные или животные ингредиенты, что и древесина, бумага и ткани, можно думать, что при склейке образуются Н-связи. По данным других авторов [1309, 1310], адгезия синтетических полимеров также частично обусловлена Н-связями. Как всегда следует помнить, что Н-связь составляет, вероятно, только одну часть механизма адгезии. Не приводя ссылок на специальные работы, отметим, что окраска бумаги [c.283]


Смотреть страницы где упоминается термин Волокна природные текстильные: [c.105]    [c.251]    [c.252]    [c.248]    [c.249]    [c.190]    [c.484]    [c.278]    [c.533]    [c.39]    [c.478]   
Энциклопедия полимеров том 1 (1972) -- [ c.485 , c.501 , c.504 , c.505 , c.508 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.485 , c.501 , c.504 , c.505 , c.508 ]




ПОИСК





Смотрите так же термины и статьи:

текстильная



© 2025 chem21.info Реклама на сайте