Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокнообразующие полимеры природные

    Перспектива увеличения производства полимерных материалов на основе целлюлозы, хитина и фибриллярного белкового сырья (типа фиброина, коллагена, кератина и пр.), особенно при условии создания интенсифицированных микробиологических технологий по синтезу этих волокно- и пленкообразующих полимеров, является достаточно реальной. Весьма парадоксальным и, по-видимому, случайным является факт образования природных полимерных углеводов на основании формирования О-рядов, а белков - Ь-рядов. И еще два замечания необходимо сделать при анализе ситуации, связанной с возможностью использования природных полимеров, и в частности белков, в качестве волокнообразующих полимеров. [c.336]


    Формование из водных суспензий. Метод получения волокон из водных суспензий нерастворимых и неплавких полимеров начинает получать промышленное применение и в настоящее время уже используется для производства волокна из политетрафторэтилена (см. т. II). Основным преимуществом метода является возможность использования для выработки волокна нерастворимых и неплавких волокнообразующих полимеров, которые не могут быть переработаны в волокно другими методами формования. Этим методом можно перерабатывать полимеры любого молекулярного веса так как необходимость предварительного образования раствора или расплава полимера для формования волокна в данном случае отпадает. Принципиально указанным методом формования можно получить волокно из любого природного или синтетического полимера, из которого в процессе его синтеза или дробления могут быть приготовлены стабильные водные дисперсии полимера с требуемой оптимальной величиной частиц. [c.61]

    Химические волокна получаются из природных и синтетических полимеров. По сравнению с полимерами, составляющими основу пластмасс, волокнообразующие полимеры отличаются более высокой упорядоченностью молекул и, как следствие, проявлением особых физических свойств. В зависимости от природы исходного сырья химические волокна подразделяются на синтетические и искусственные. [c.586]

    ПРИРОДНЫЕ ВОЛОКНООБРАЗУЮЩИЕ ПОЛИМЕРЫ [c.288]

    Приведены методы оценки молекулярных масс, полидисперсности, формы и размеров макромолекул рассмотрены вопросы синтеза волокнообразующих полимеров методами полимеризации и поликонденсации при малых и глубоких степенях конверсии, а также даны основные сведения по химии и физикохимии природных волокнообразующих полимеров целлюлозы, хитина и фибриллярных белков. Изложение основано на количественных примерах и задачах, наиболее часто встречающихся в практике научных и технологических работ. [c.2]

    Естественно, что новый виток научно-технического прогресса в области производства полимерных материалов на основе природных волокнообразующих полимеров должен сопровождаться качественно новыми инженерными решениями в обезвреживании производства и резким ослаблением экологического прессинга. [c.288]

    Полимерные волокна отличаются тем, что исходные полимеры в них находятся в ориентированном состоянии в результате сильной вытяжки. Большинство волокнообразующих полимеров находится в кристаллическом состоянии и характеризуется сильными межмолекулярными взаимодействиями. Температуры плавления этих полимеров 100—300° С. Природные и синтетические волокна являются основой для создания текстильных материалов и изделий. [c.11]


    Приведены методы оценки характеристик макромолекул. Даны основные сведения по химии и физикохимии природных волокнообразующих полимеров. Примеры и задачи основаны на практике научных и технологических работ. [c.423]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]

    Текстильные волокна независимо от их происхождения состоят из высокомолекулярных соединений — полимеров. Молекулярная масса природных волокнообразующих полимеров составляет от 100—200 тыс. до 1—2 млн. У химических волокон она колеблется от 15—20 тыс. до 200—300 тыс. Эти значения являются среднестатистическими, так как все высокомолекуляр- [c.7]

    Фиксация красителей, т. е. процесс переноса их из слоя печатной краски в волокно и взаимодействия с макромолекулами волокнообразующего полимера, традиционно осуществляется в среде водяного пара путем длительной (от 10 до 60 мин) обработки напечатанной ткани в запарных аппаратах непрерывного или периодического действия. В последнее время начали развиваться принципиально новые приемы и способы фиксирования красителей различных классов на текстильных материалах из природных и химических волокон. Из них в первую очередь следует назвать высокотемпературные способы фиксирования [c.68]

    Последующие годы ознаменовались чрезвычайно сильным развитием методов синтеза в области высокомолекулярных соединений. Из крупнейших достижений этого периода следует отметить полимеризацию мономеров диенового ряда, изученную С. В. Лебедевым и приведшую к промышленному производству синтетических каучуков, а также разработанные Карозерсом методы поликонденсации, с помощью которых было получено множество новых синтетических веществ, в частности важных волокнообразующих полимеров — полиамидов и полиэфиров. Наряду с этим в 40-х годах интенсивно изучались природные полимеры — целлюлоза, крахмал, каучук. Из крупнейших достижений физики полимеров того времени следует упомянуть разработку безупречных методов измерения молекулярных весов макромолекул (осмометрию и измерение светорассеяния), а также изучение седиментации в ультрацентрифуге, построенной Сведбергом. [c.16]

    Для химика-органика наибольший интерес в области производства химических волокон представляют разработка новых и усовершенствование существующих методов синтеза волокно-образующих полимеров и полупродуктов для их получения. Химическое модифицирование готовых волокон не привлекает особого внимания, так как волокнообразующие полимеры, как правило, довольно инертны. С другой стороны, биохимия образования природных волокон почти не изучена, тогда как их структура и способы улучшения их свойств путем химического модифицирования являются предметом широкого исследования. Более подробно это различие в подходе к химическим [c.283]


    Исследование синтеза жесткоцепных волокнообразующих полимеров, обеспечивающих включение различных группировок в макромолекулу полимера, снижающих электризуемость волокон и обеспечивающих им гидрофильные свойства, аналогичные природным волокнам. [c.14]

    Шерсть и ряд других природных белковых волокон могут служить хорошим примером волокон с сетчатой структурой. Создание поперечных связей является обычной операцией формования искусственных белковых волокон. Однако, если допустить образование большого количества поперечных связей, возникают гигантские трехмерные молекулы в этом случае полимер становится неплавким и нерастворимым, и получить волокно из такого полимера невозможно. По этой причине для синтеза волокнообразующих полимеров применяют исключительно бифункциональные мономеры. [c.71]

    Химические волокна в зависимости от исходного волокнообразующего полимера делятся на искусственные, получаемые химической переработкой природных полимеров (целлюлозы, белков), и синтетические, вырабатываемые из высокомолекулярных соединений, синтезируемых из мономеров. [c.314]

    Плотность полиэтилена низкого давления 0,94—0,96 г/см , среднего давления — 0,9В г/см , т. е. несколько выше, чем у полипропилена, но значительно ниже, чем у других природных и синтетических волокнообразующих полимеров.  [c.293]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    На основе разработанных в середине 50-х годов новых каталитических систем цепной полимеризации были получены кристаллические волокнообразующие полимеры, из которых промышленное применение нашли полиэтилен, изотактический полипропилен и полистирол. Это обт.ясняется не только широкими возможностями использования волокон из этих полимеров, но и практически неограниченной сырьевой базой для синтеза полимеров, так как в качестве исходных мономеров используются продукты переработки нефти и природного газа. [c.493]

    Методы расшифровки рентгенограмм кристаллических высокополимеров в основном аналогичны методам, применяемым при изучении кристаллов низкомолекулярных веществ. Однако специфические особенности полимерных материалов увеличивают трудности при применении этих методов и ограничивают их возможности, так что до сих пор удалось определить расположение атомов в кристаллических областях только таких полимеров, которые имеют сравнительно простое химическое строение. Синтетические волокнообразующие полимеры как раз и относятся к числу полимеров, обладающих довольно регулярным геометрическим и простым химическим строением, что позволяет изучить их достаточно детально, так что данные о структуре кристаллических областей этих полимеров более полны и определенны, чем это имеет место в случае более сложных природных волокон. [c.265]

    Вначале получение искусственных волокон было связано с переработкой природного сырья, обладающего волокнистой структурой, например древесной целлюлозы. Такое положение сохранялось до 1938 г., когда впервые (если не считать получение стеклянного волокна) было изготовлено волокно нейлон, являющееся синтетическим волокном в полном смысле этого слова. Исходное сырье для этого волокна уже не природный -волокнистый материал, а синтезированный из простых веществ полимер с волокнообразующими свойствами. [c.29]

    Целлюлоза, из которой состоит готовое вискозное волокно, отличается от исходной древесной целлюлозы в процессе получения волокна происходит деструкция целлюлозы — длинные макромолекулы ее частично гидролизуются, в результате чего образуются более короткие цепи, которые все же обладают достаточной длиной. При получении искусственных волокон путем химической переработки природных полимеров (получение вискозного волокна из древесной целлюлозы, ацетатного волокна из хлопковой целлюлозы, альгинатного волокна из морских водорослей) желательно неизбежный процесс деструкции свести до минимума. Если деструкция природных полимеров проходит в значительной степени, происходит ухудшение их волокнообразующих свойств и снижение прочности получаемых волокон. При настоящем уровне наших знаний полное устранение деструкции невозможно, однако сейчас найдены пути значительного замедления деструкции. [c.118]

    Получение бикомпонентных волокон. Существенный интерес представляют текстурированные нити, полученные из так называемых бикомпонентных волокон. Такие нити могут конкурировать по свойствам с текстурированными нитями, получаемыми описанными выше методами. Бикомпонентные волокна (нити) могут быть сформованы из любого волокнообразующего природного (например, вторичного ацетата целлюлозы) или синтетического полимера, обладающего термопластичными свойствами. [c.156]

    Во 2-м издании книги большее внимание уделено способам количественной оценки гибкости (жесткости) макромолекул, а также кинетическим аспектам афегатных и фазовых переходов в полимерных системах. Включен новый раздел, посвященный реологии растворов и расплавов полимеров. Коренной переработке подвергнуты также разделы, связанные с синтезом полимеров, описанием свойств и превращений природных волокнообразующих полимеров. Наряду с целлюлозой определенное внимание уделено хитину и хитозану, являющимся интересными волокнообразующими полимерами. Введен раздел, посвященный химии и физикохимии фибриллярных белков фиброину, кератину, коллагену. Примеры и задачи, приведенные во втором издании книги, взяты из исследовательской и технологической практики авторов книги. [c.9]

    С точки зрения физиологических процессов белки и протеиды представляют важнейший класс природных полимеров. Неисчерпае-люе многообразие структур, обусловливаемые ими свойства и функции организмов иллюстрируют возможности, возникающие перед химией высокомолекулярных соединений, и одновременно трудности, связанные с изучением этих продуктов. Так, например, имеются фибриллярные и глобулярные, волокнообразующие и эластичные, растворимые и сшитые, кристаллические и аморфные белки. Все типы белков характеризуются двумя общими свойствами  [c.97]

    Комплекс физико-химических свойств природных волокнообразующих полимеров обусловлен первичным, вторичным и более высокими уровнями их структурной организации. Каждый из полимеров, представляющий интерес как волокнообразующий (целлюлоза, хитин, фибриллярные белки), имеет определенное биофункциональное назначение. Особенность биосинтетических процессов такова, что первичная структура макромолекул этих полимеров формируется как регулярная, несмотря на возможность случайного включения в них "дефектных" звеньев. Регулярность строения полимерных цепей предопределяет возможность их самоупорядочения (кристаллизации). Параметр гибкости макромолекул природных волокнообразующих полимеров /ф несколько больше 0,63, что позволяет отнести их к полужесткоцепным полимерам. [c.288]

    Так, проявление сегментальной подвижности макромолекул целлюлозы возможно лишь при условии присутствия хотя бы небольших количеств воды, являющейся пластификатором для этого полимера. В условиях интенсивного набухания, а также в концентрированных растворах макромолекулы природных волокнообразующих полимеров способны к самоупорядочению с образованием жидкокристаллических структур. [c.289]

    Одной из основных особенностей волокпообразующих полимеров является их высокий молекулярный вес, который в случае синтетических волокнообразующих полимеров может колебаться в широких пределах, но обычно превышает 10 ООО. Молекулярные веса некоторых волокнообразующих полимеров ниже, чем молекулярные веса природных или синтетических стеклообразных полимеров, у которых они часто достигают нескольких сотен тысяч, хотя молекулярные веса порядка 10 ООО—20 ООО указывают на большие с химической точки зрения размеры молекул (тысячи и более атомов). Простейшим путем образования таких больших молекул является соединение молекул мономера в длинные цепи. Для получения волокпообразующих полимеров обычно применяются бифункциональные мономеры (например, простые виниловые соединения и ш-аминокислоты), вследствие чего наиболее вероятно образование неразветвленных линейных молекул. Как химические, так и физические данные по структуре готовых полимеров свидетельствуют о том, что в процессе их синтеза преобладают реакции, приводящие к образованию неразветвленных цепей. Реакции, приводящие к образованию разветвленных молекул, также имеют место, но в меньшей степени. Очень желательно найти методы доказательства разветвленности молекул, но эта задача является очень трудной и может быть решена лишь в редких случаях. [c.205]

    Изменяется и ситуация с источниками сырья для производства полимерных материалов. В последние 40-50 лет развитие производства и переработки волокнообразующих полимерных материалов базируется на использовании продуктов глубокой переработки природного углеводородного сырья. Однако с учетом быстро прогрессирующего исчерпания мировых запасов нефти и газа все большее внимание вновь уделяется проблемам технического использования природных полимеров - различных полиуглеводов и фибриллярных белков, чему способствуют успехи генной инженерии и других направлений биотехнологии. [c.8]

    Гидрофобные синтетические волокна отличаются от гидрофильных природных и химических волокон прежде всего тем, что они не набухают в воде и водных растворах, поэтому требуются какие-то иные способы повышения восприимчивости гидрофобных синтетических волокон к красителям, например повышение температуры. В обычных условиях (20—25 °С) макромолекулы термопластичных синтетических полимеров находятся как бы в замороженном, застеклованном состоянии и не способны к каким-либо перемещениям. При повышении температуры в определенный момент происходит расстекловывание полимера, т. е. возникает явление сегментальной подвижности макромолекул, что приводит к образованию в аморфных областях волокна свободных пространств, достаточных для прохода молекул красителя. Температура, при которой происходит изменение сегментальной подвижности макромолекул волокнообразующего гидрофобного полимера, называется температурой стеклования. О том, насколько эффективен температурный фактор при краш1ении гидрофобных синтетических волокон в водной среде, можно судить по следующим экспериментальным данным. При 100 °С коэффициент диффузии красителя в полиэфирном волокне, характеризующий скорость проникновения красителя в волокно, составляет 10 —10см /с. Повышение температуры до 150—230°С приводит к увеличению этого показателя до 10 °—10 см /с. С примерно такими же скоростями диффундируют красители в набухшие в воде гидрофильные волокна при 100°С. [c.48]

    Карбоксиангидриды различных аминокислот хорошо сополимеризуются друг с другом. Нек-рые сополимеры по свойствам близки к природным белкам. Получены волокнообразующие и пленкообразуюпще сополимеры. При использовании в качестве катализаторов полимеризации полимеров со свободными аминогруппами (полипептиды, белки, полиаминостирол и т. д.) могут быть получены привитые и блоксополимеры. К. сополимеризуются с окисями алкиленов и -пропиолактоном. [c.472]

    Интересно отметить, что метод гомогенной прививки может быть использован для получения эластомеров на основе целлюлозы [657]. По этому методу волокна искусственного шелка вначале сшивают формальдегидом, а затем подвергают набуханию в водном растворе хлорида цинка. В качестве мономера используют этилакрилат, прививку которого проводят в водной эмульсии, инициируя сополимеризацию ионами церия. Эти материалы представляют собой полувзаимопроникающие сетки первого рода (см. разд. 8.6). Если количество привитого полимера превышает 100%, то сополимеры обладают свойствами эластомеров. По-ви-димому, целлюлоза и полиэтилакрилат выделяются в две различные фазы, при этом целлюлоза образует жесткую фазу, диспергированную в более мягкой акрилатной матрице, либо оба компонента образуют непрерывные фазы. При небольшом содержании акрилата целлюлоза, по-видимому, находится в виде непрерывной фазы. Следует отметить, что синтетические полимеры прививали и к шерсти — другому важному волокнообразующему природному полимеру. Методы получения привитых сополимеров шерсти аналогичны методам получения привитых целлюлозных волокон [758]. [c.192]


Смотреть страницы где упоминается термин Волокнообразующие полимеры природные: [c.218]    [c.14]    [c.288]    [c.288]    [c.106]    [c.106]    [c.256]    [c.253]    [c.275]    [c.13]    [c.275]   
Физико-химические основы технологии химических волокон (1972) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры природные



© 2025 chem21.info Реклама на сайте