Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность упаковки макромолекул

    Взаимодействие иона гидроксония с глюкозидной связью приводит к ее возбуждению и ослаблению. Происходит разрыв кислородного мостика с образованием иона карбония. Вследствие своей малой устойчивости ион карбония быстро реагирует с водой, образуя ОН-группу и генерируя протон. Протон с водой вновь образует ион гидроксония. Существенное влияние на скорость гидролиза оказывает плотность упаковки макромолекул целлюлозы (так как процесс гетерогенный). Например, целлюлозные волокна гидролизуются со значительно меньшей скоростью, чем целлюлоза, находящаяся в растворенном состоянии, где все глюкозидные ОН-группы доступны разрушающему действию гидролизующего агента (процесс гомогенный). Гидролиз целлюлозы протекает постепенно, приводя к продуктам со все более короткими молекулярными цепями, вплоть до Р-О-глюкозы. Последовательность стадий гидролитического распада целлюлозной молекулы выражается следующей схемой  [c.296]


    Полярность полимера определяет уровень внутри- и межмолекулярного взаимодействия, т. е. плотность флуктуационной сетки. При 7 <7 с модуль накопления С обычно возрастает с ростом полярности и плотности упаковки макромолекул. Поскольку плотность упаковки, как правило, снижается с ростом [c.298]

    Если полимер построен из регулярных полимерных цепей, т. е. способен к кристаллизации, то плотность упаковки макромолекул в различных частях пачек различна в аморфных областях меньше, в кристаллических - больше. В свою очередь пачки макромолекул ассоциируются в микрофибриллы так, что между пачками появляются области с малой плотностью упаковки или даже пустоты. Дальнейшее усложнение надмолекулярной орга- [c.154]

    Влияние плотности упаковки макромолекул У некоторых полимеров при стекловании макромолекулы не успевают плотно упа  [c.216]

    Изучение строения лакокрасочных покрытий показало, что они обладают пористо-капиллярной структурой. При этом различают поры, образуемые просветами , возникающими между молекулярными цепями при флуктуации плотностей во время теплового движения отрезков цепей, и истинные поры, образующиеся в процессе формирования покрытий. Величина просветов зависит от плотности упаковки макромолекул полимера и находится в пределах 0,001—0,1 мкм размер (и количество) истинных пор в значительной мере определяется способом нанесения лакокрасочного покрытия и колеблется от 1 до 100 мкм. [c.25]

    Нуклеиновые кислоты, даже однонитевые, имеющие структуру статистического клубка, упакованы заметно менее плотно, чем белки, поэтому для фракционирования их в заданном интервале молекулярных масс следует использовать более крупнопористые матрицы, чем для белков в том же интервале. Этот эффект намного сильнее выражен в случае жестких структур двунитевых нативных ДНК. Плотность упаковки макромолекул нуклеиновых кислот сильно зависит от концентрации соли в элюенте, которая нейтрализует электростатические силы отталкивания фосфатных групп. [c.134]

    По некоторым данным, полученным при исследованиях структуры анизотропного изотактического полипропилена, мы имеем здесь дело не с новой структурной модификацией, а, в сущности, с деформацией решетки термостабильной структурной модификации. Это подтверждается обратимым характером изменения плотности упаковки макромолекул в полимере [20]. [c.69]

    В случае оценки плотности упаковки макромолекул для реального полимерного тела, содержащего доступные для молекул сорбата микропоры, коэффициент молекулярной упаковки /с следует рассчитывать по соотношению [c.57]


    БК растворяется в насыщенных углеводородах и несколько хуже - в аренах не растворяется в спиртах,эфирах, кетонах, ацеталях, а также в растворителях, содержащих амино-, нитро- и другие высокополярные группы. Отличительной особенностью БК является низкая газопроницаемость, высокие диэлектрические характеристики и озоностойкость. По газонепроницаемости он превосходит все известные каучуки за исключением тиокола и этилен-пропиленового каучука вследствие высокой плотности упаковки макромолекул. [c.259]

    Если полимеры имеют одинаково построенную основную цепь и различаются лишь характером заместителей, можно считать, что основную роль в определении величины проницаемости будут играть межмолекулярные силы. В первом приближении величина межмолекулярных сил может быть оценена из плотности энергии когезии полимеров , рассчитанной на основании данных о набухании, дифференциальных теплотах растворения и др. Проницаемость должна находиться в обратной зависимости от плотности энергии когезии, так как последняя увеличивается с ростом полярности полимеров и плотности упаковки макромолекул Значения плотности энергии когезии, взятые из работы Шварца сопоставлены в табл. 8 с данными о водородопроницаемости некоторых полимеров. [c.82]

    Линейная зависимость температуры стеклования смешанных поликарбонатов от их состава закономерна. Замена одного бисфенола другим не вызывает изменения длины основного звена и периода идентичности. Поэтому плотность упаковки макромолекул определяется аддитивной суммой взаимодействий отдельных основных звеньев макромолекул. Взаимодействие последних зави- [c.147]

    Процесс проникновения влаги сквозь пленку начинается с увлажнения (смачивания), набухания и диффузии молекул воды в микропорах. Увлажнение вызвано электростатическим зарядом, возникающим в покрытии при контакте с влагой. В результате покрытие проницаемо преимущественно для ионов с зарядом противоположного знака. Ионы проникают в покрытие в результате активированной диффузии путем ступенчатого перемещения в толщу покрытия, пропитывая его, вызывая набухание. Этот медленный процесс обеспечивает в дальнейшем относительно быстрое перемещение гидратированных ионов сквозь набухшее покрытие, как по водному раствору. Набухание органической пленки зависит от плотности упаковки макромолекул и от тепловых колебаний. Более [c.162]

    Межмолекулярное взаимодействие максимально проявляется, когда макромолекулы расположены упорядоченно, ориентированы почти параллельно друг другу, так как в этом случае все действующие между ними силы имеют приблизительно одно и то же направление при этом существенную роль может играть зависимость расположения одних участков цепи от ориентации соседних — кооперативный эффект. Не меньшее значение имеет плотность упаковки макромолекул, так как действие межмолекулярных сил очень- [c.29]

    Свойства полимерных стекол тесно связаны с гибкостью макромолекул. Сравнительно жесткие цепи, которые перемещаются, перегруппировываются и укладываются с трудом, дают стекла с пониженной плотностью упаковки макромолекулы, с большим свободным пространством , чем у гибких цепей. Рыхлость упаковки растет с увеличением длины макромолекулы, ее степени полимеризации существенную роль при этом также играет развитие надмолекулярной структуры, в результате чего стекла утрачивают черты сплошного тела. [c.409]

    Аналогичное явление имеет место у кристаллических полимеров, когда звенья кристаллических областей, где диффузия затруднена, реагируют медленнее, чем звенья аморфных областей. Иногда реакция протекает только на поверхности кристалла. Отдельные участки аморфных полимеров могут отличаться по степени упорядоченности и плотности упаковки макромолекул, что также отражается иа скорости диффузии. [c.600]

    В результате механической деструкции в атмосфере азота молекулярная масса полимера снижается до некоторой предельной величины, различной для каждого материала. Минимальная предельная молекулярная масса определяется соотношением энергии химических связей макромолекулярной цепи и межмолекулярного взаимодействия. Кроме того, большое значение имеют вид механического воздействия, величина прилагаемой нагрузки, температура и характер среды Увеличение степени асимметрии, жесткости и плотности упаковки макромолекул и концентрации раствора благоприятствуют механическому крекингу полимера. И наоборот, повышение гибкости и подвижности тормозит этот процесс. [c.642]

    Мерой плотности упаковки макромолекул в этом случае служит доля занятого (ван-дер-ваальсового) объема, которая, согласно А. И. Китайгородскому [1], называется коэффициентом молекулярной упаковки к  [c.101]

    Плотность упаковки макромолекул заметно меняется при действии на полимер гидростатического давления. Для расчета величин к можно воспользоваться экспериментальными данными по изменению удельного объема полимерных тел, приведенными в работе [40]. На рис. 4.4 показаны зависимости коэффициентов упаковки от гидростатического давления р для аморфного (полиметилметакрилат) и аморфно-кристаллического (полиэтилен) полимеров. Коэффициент упаковки существенно увеличивается с ростом гидростатического давления для обоих полимеров. Для полиэтилена зависимость к от р более интенсивная, чем для полиметилметакрилата. Интересно, что при давлении 300 МПа коэффициент упаковки для полиметилметакрилата становится больше, чем для этого же полимера в кристаллическом состоянии в отсутствие гидростатического давления. Следовательно, приложением высокого гидростатического давления можно достигнуть более плотной упаковки, чем в идеальном кристалле. [c.134]


    Если плотность упаковки макромолекул в сополимере или в смеси подчиняется правилу аддитивности, то [c.135]

    В пределах одного физического состояния большое зпачение имеет плотность упаковки макромолекул. По-видимому, полиизобутилен значительно плотнее упакован, чем натуральный каучук и полибутадиен, поэтому его газопроницаемость значитель ю мепьше, чем у последних двух полимеров. Из стеклообразных полимеров наибольшей газопроницаемостью обладает полистирол, что может быть объяснено его более рыхлой упаковкой по сравнению с упаковкой других высокомолекулярных стекол. [c.491]

    Этот выбор определяется, в первую очередь, условиями растворимости и сохранности материала препарата. Эти соображения мoгy J диктовать pH и ионную силу буфера, наличие в нем мочевины и детергентоп. Одпако надо иметь в впду и возможное воздействие выбора элюента на ход самого хроматографического процесса. Во-первых, такое воздействие может проявляться в изменениях конформации пли плотности упаковки макромолекул, диссоциации белков па субъединицы, диссоциации кофакторов от ферментов и др. Во-вторых, следует проверить устойчивость материала матрицы к выбранному значению pH и диссоциирующим добавкам. Наконец, не следует упускать пз виду возможности влияния элюента на взаимодействие разделяемых веществ с материалом матрицы, т. е. [c.135]

    Свойства многих блочных и пленочных полимеров во многом зависят от плотности упаковки макромолекул, а для таких систем, как сорбенты, иониты и др., которые применяются в гельхроматофафии и для изготовления ионооб-менников, наиболее существенное значение имеют суммарный объем пор, распределение их по размерам, а также их удельная поверхность. [c.55]

    При контакте ннзкомолекуляр юго реагента с полимером в реакцию сразу вступают только функциональные группы, расположенные на поверхности. К функциональным группам, не расположенным на поверхности полимера, реагент должен предварительно продиффундировать сквозь слон полимера. Продолжительность диффузии определяется не только условия- <4 реакции, химическим строением полимера н низкомолеку- лярного реагента, но и плотностью упаковки макромолекул Полимера. Так как в аморфных областях упаковка макромо- чскул более рыхлая, чем в кристаллических, продолжительность контакта к полнота реакции низкомолскулярного реагек- 3 с макромолекулами, расположенными в аморфных областях, [c.161]

    В процессе механодесгрукции происходит постепенное снижение стегсии полимеризации. Степень полимеризации, при которой дсструкиия резко замедляется или прекращается, называется пределом деструкции. Предел деструкции для многих полимеров составляет 100—1000 звеньев. Кроме того, происходит выравнивание длин макромолекул и, следовательно, сужение молекулярно-массового распределения (рис. 3 7) Минимальная предельная молекулярная масса определяется соогно-шением энергий химических связей макромолекулы и межмолекуляр кого взаимодействия. Кроме того, большое значение имеет вид механического воздействия, величина прилагаемой нагрузки, температура и характер среды. Увеличение степени асимметрии, жесткости и плотности упаковки макромолекул и концентрации раствора благоприятствуют механическому крекингу полимеров. И наоборот, повышение гибкости и подвижности тормозит этот процесс [c.217]

    Плотность упаковки макромолекул в высокоэ-пастнческом состоянии несколько ниже, чем в стеклообразном, но тоже достаточно высока Например, коэффициент плотности упаковки Ку для пплипзобути.чен составляет 0,667 в стеклообразном и 0,628 0 высокоэтастическом состоянии (при 293 К). С повышением температуры свобод (ый объем Ус возрастает. [c.241]

    Плотность упаковки макромолекул в вязкотекучем состоянии аналогична плотиости жидкостей, но ниже пчотности упаковки в высокоэластическом состоянии в основном за счет увеличения доли свободного физического объема, обусловленного тепловым движением. [c.253]

    Возможность образования мнкротрещин в полимерах связана с наличием в них значительного свободного объема (см. гл. 4). Микротретины возникают, как правило, на границах надмолекулярных образований и в дефектных участках самих структур. Поэтому чем меньше размеры надмолекулярных структур в аморфных и кристаллических полимерах, чем выше плотность упаковки макромолекул в надмолекулярных структурах и самих структур, тем в меиьшей мере снижается прочность по сравнению с предельно достигаемой. Кристаллические полимеры ха-рактерилуются большой плотностью упаковки по сравнению с аморфными, и для них о р, как правило, вьиие и существенно завнсит от степеии кристалличности и морфологии кристаллов. Ннже приведены значения Охр некоторых полимеров в аморфном (А) и кристаллическом (К) состояниях- [c.345]

    Особенно большая плотность упаковки макромолекул наблюдается у кристаллических полимеров, для которых соблюдается принцип наиплотнейшей упаковки. Так. изотактические кристаллические полимеры характеризуются большей плотностью, чем соответствующие им атактические полимеры, кристаллические полнены имеют большую плотность по сравнению с аморфными и т, д. (табл, 8). Полиэтилены и полиэтилентсрефталаты разной степени кристалличности также различаются своими плотностями. [c.150]

    Влияние плотности упаковки макромолекул . У некоторых по лимеров при стекловании макромолекулы не успевают плотно упа коваться (глава УГП), Рыхлая упа ковка макромолекул облегчает из меиения нх конформаций, т. е. спо собствует Проявлению вынужденной эластичности при приложении боль-ишх папряжеиий при этом Ов це очень сильно изменяется при охлаждении [кривая Ов = ЦТ) пологая] и температура хрупкости низкая. Например, рыхлая упаковка макромолекул нитрата и ацетата [[еллю лозы обусловливает широкий тем пературиый интервал их вынужден ной эластичности. [c.216]

    В стеклообразном состоянии у полимерных диэлектриков колеб лется в пределах Ю " —10 0м см При переходе полил ера в высокоэластическое состояние электропроводное гь повышается -вследствие возрастания подвижности мономерных звеньев, облегчающего перемещение ионов Введение пластификаторов, снижая вязкость полнмерной системы, увеличивает у на 3—5 порядков Кристаллизация, увеличивая плотность упаковки макромолекул и затрудняя движение ионов-носителей, наоборот, резко снижает удельнз Ю электропроводность [c.568]

    Плотность упаковки макромолекул будем характеризовать долей занятого объема. Это понятие тесно связано с определением свободного объема твердого тела. При этом разные авторы придают свободному объему различный смысл. В одних случаях свободный объем определяют как избыточный объем, появляю- [c.100]

    Для правильной оценки плотности упаковки макромолекул нужно пользоваться не величиной (1, а величиной к, рассчитываемой по формуле (4.1). Интересны в этом отношении данные, полученные для дейтерированного полистирола [39]. При дей-терировании согласно уравнению (4.4) плотность должна увеличиваться, так как растет молекулярная масса М повторяющегося зве1на нри неизменном ван-дер-ва-альсовом объеме. На рис. 4.3 показана зависимость плотности (1 полистирола от степени дейтерирования расчетная зависимость, получаемая с помощью соотношения (4.4), приведена в виде графика, а точки соответствуют экспериментальным значениям й. Хорошее совпадение расчетных и экспериментальных значений плотности очевидно. [c.132]

    Однако последующие исследования показаопи, что эластомеры нельзя рассматривать как бесструктурный войлок перепутанных цепей [5 46]. Прежде всего оказалось, что плотность упаковки макромолекул каучукоподобных полимеров значительно выше, чем можно было ожидать для системы хаотически перепутанных цепей. Робертсон [47] рассчитал, что для последнего случая отношение плотности одного и того же полимера в аморфном и кристаллическом состояниях рам/ркр= [c.37]

    При инициированной персульфатом калия латексной полимеризации винилацетата в присутствии другого эмульгатора — гидро-фторпеларгоната калия образуются более мелкие частицы ( = —(230 нм), резко отличающиеся плотностью упаковки макромолекул (рис. 3.28). Частицы латекса, не подвергнутые кислородному травлению (рис. 3.28, а), имеют характерную структуру в середине шарообразных частиц находится несколько вытянутых в длину плотных макромолекулярных пачек, в периферийной, менее хшот-ной зоне частиц, заметной структуры не обнаруживается. Различие в плотности полимера по объему частиц подтверждается опытами их кислородного травления (рис. 3.28, б), в процессе которого в первую очередь разрушаются менее плотные, периферийные области. Это же подтверждается и исследованием латексных плеиок (р ис. 3.28, в, г). [c.146]


Библиография для Плотность упаковки макромолекул: [c.520]   
Смотреть страницы где упоминается термин Плотность упаковки макромолекул: [c.308]    [c.146]    [c.150]    [c.491]    [c.56]    [c.150]    [c.216]    [c.491]    [c.491]    [c.71]    [c.101]    [c.132]    [c.136]    [c.33]   
Высокомолекулярные соединения (1981) -- [ c.26 , c.29 ]

Деформация полимеров (1973) -- [ c.47 ]

Структура и механические свойства полимеров Изд 2 (1972) -- [ c.42 ]




ПОИСК







© 2025 chem21.info Реклама на сайте