Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Турбулентная вязкость жидкостей

    В барботажном слое турбулентная вязкость жидкости обусловлена, в основном, движением газовых струй и пузырей. Влияние стенок различных устройств на тарелке на развитие турбулентности в жидкой фазе значительно меньше, по сравнению с влиянием газового потока. Если скорость газа (пара) в струе достигает 10-20 м/с, то средняя скорость жидкой фазы в продольном направлении на массообменной тарелке составляет всего несколько сантиметров в секунду. [c.138]


    Чтобы оценить по достоинству значение работ Н. П. Петрова, нужно учесть, что в то время работы Рейнольдса о сущности ламинарного и турбулентного течения жидкости были мало известны. Позже, проведя глубокий анализ движения вязкой жидкости в канале, образованном двумя поверхностями, находящимися в относительном движении, Рейнольдс показал, что шип может поддерживать нагрузку только при эксцентричном его положении. Свое приближенное уравнение ГТС, разработанное на основании уравнения механики вязкой жидкости Навье — Стокса, Рейнольдс вывел на основании следующих допущений гравитационными и инерционными силами можно пренебречь вязкость смазочной среды постоянна жидкость (смазка) несжимаема толщина пленки смазки мала по сравнению с другими размерами скольжение на границе жидкость— твердое тело отсутствует влиянием поверхностного на--тяжения можно пренебречь смазка является ньютоновской жидкостью. [c.229]

    Скорость движения вихря масштаба X в условиях свободной турбулентности в общем случае должна зависеть от вязкости жидкости V, ее плотности р, диссипации энергии в единице объема е и масштаба Л,. При зависимость скорости от вязкости должна вырождаться, так как кинетическая энергия этих вихрей значительно больше энергии, затрачиваемой на преодоление сил трения [82]. Из остающихся величин можно составить только единственную комбинацию с размерностью скорости [c.177]

    Имеющиеся в литературе данные по непосредственному определению влияния вязкости жидкости на коэффициент массопередачи довольно противоречивы [146, 268, 423]. Однако можно считать экспериментально установленным, что вязкость влияет на Ку [146, 268, 280] (рис. III.8) и не влияет на Кг [7, 420]. Кроме того, установлено [234], что высокая турбулентность пенного слоя в значительной мере маскирует влияние вязкости жидкости на скорость процессов массопередачи и при 2,5—3 м/с это влияние сводится к минимуму. Однако при Wr <С 2 м/с оно становится ощутимым. Для изучения влияния вязкости жидкости на коэффициент массопередачи при пенном режиме авторами проведена изотермическая десорбция двуокиси углерода и аммиака из воды и водно-глицериновых растворов с концентрацией глицерина от О до 50% (вязкость [c.135]

    Из этих выражений следует, что турбулентное движение возникает с увеличением диаметра трубы, скорости движения и плотности жидкости или с уменьшением вязкости жидкости. [c.144]

    Как известно из молекулярной физики, коэффициенты вязкости, теплопроводности и диффузии в газах пропорциональны произведению скорости движения молекул и длины пути их свободного-пробега. По аналогии с этим пульсационное движение в жидкости вызывает появление дополнительных параметров турбулентной вязкости е, турбулентной теплопроводности и турбулентной диффузии [c.21]


    Исследованиями установлена независимость скорости циркуляции жидкости от ее поверхностного натяжения. Влияние же вязкости жидкости проявляется в основном через касательные напряжения на стенках труб, которые вследствие развитой турбулентности двухфазного потока мало чувствительны к изменению вязкости. [c.96]

    Вычисление потерь давления для двух фазного течения сильно усложняется существованием большого разнообразия возмож ных видов течения. Для пузырькового тече ПИЯ в первом приближении влияние пу зырьков весьма приближенно эквивалентно увеличению вязкости жидкости. Для коль цевого течения положение намного сложнее, так как течение жидкости нли газа может быть либо ламинарным, либо турбулент ным. При этом возможно существование четырех режимов двухфазного кольцевого течения с жидкой пленкой, а именно тече ние обеих фаз турбулентно течение обеих фаз ламинарно течение газа турбулентно, течение жидкости ламинарно течение жид кости турбулентно, течение газа ламинарно. Кроме того, в поток газа может поступать либо больше, либо меньше мелких капель, и это оказывает влияние на обмен колп чеством движения по мере того, как капли попадают в поток газа или покидают его, влияя, таким образом, на градиент давле пня. [c.100]

    Кажется противоестественным, что мощность электродвигателя мешалки должна быть ниже, когда вязкость жидкости выше. Тем не менее при повышении вязкости в турбулентном режиме процесс перемешивания становится более локализованным, и величина потока, вызываемого мешалкой, понижается. Однако при ламинарном режиме мощность, потребляемая мешалкой, прямо пропорциональна вязкости. [c.49]

    При ламинарном движении преимущественное влияние имеет вязкость, а при турбулентном — плотность жидкости. [c.194]

    Для характеристики турбулентной вязкости рассмотрим две частицы жидкости в турбулентном потоке, движущемся в направлении оси х, параллельно оси трубы. Пусть расстояние между частицами в направлении, перпендикулярном оси т бы, 1 вно 4у. Составляющие скорости частиц по направлению потока и 2 отличаются друг от друга на dw , причем вследствие разности скоростей возникает касательное напряжение Тн, определяемое по уравнению (П,12а)  [c.46]

    Турбулентная вязкость, в отличие от обычной вязкости, не является физико-химической константой, определяемой природой жидкости, ее температурой и давлением. Турбулентная вязкость зависит от скорости жидкости и других параметров, обусловливающих степень турбулентности потока (в частности, расстояния от стенки трубы и т. д.). [c.47]

    Суммарное касательное напряжение в потоке определяется, следовательно, как вязкостью жидкости, так и турбулентностью потока  [c.47]

    Сопротивление трения, называемое также сопротивлением по длине, существует при движении реальной жидкости по всей длине трубопровода. На него оказывает влияние режим течения жидкости (ламинарный, турбулентный, степень развития турбулентности). Так, турбулентный поток, как отмечалось, характеризуется не только обычной, но и турбулентной вязкостью, которая зависит от гидродинамических условий и вызывает дополнительные потери энергии при движении жидкости. [c.85]

    Тепловым пограничным подслоем считается пристенный слой, в котором влияние турбулентных пульсаций на перенос тепла становится пренебрежимо малым. Подобно тому как при возрастании вязкости жидкости увеличивается толщина гидродинамического пограничного подслоя, возрастание теплопроводности приводит к утолщению теплового пограничного [c.276]

    Смесители для жидкостей работают преимущественно по механизму ламинарного смешения, сопровождающегося увеличением площади поверхности раздела между компонентами и распределением элементов поверхности раздела внутри объема смесителя. Конструкция такого смесителя зависит от вязкости смесей [4]. Например, для низковязких жидкостей применяют лопастные и высокоскоростные диспергирующие смесители. При малой вязкости смеси существенную роль может играть турбулентное смешение. Для смесей со средними значениями вязкости используют разнообразные двухроторные смесители, например смеситель с 2-образными роторами. Такой смеситель представляет собой камеру, образованную двумя полуцилиндрами. В камере установлены два ротора, вращающиеся навстречу друг другу с различной скоростью. Обычно отношение скоростей вращения роторов составляет 2 1. Смешение происходит вследствие взаимного наложения тангенциального и осевого движений материала. Чтобы исключить возможность образования застойных зон, зазор между роторами и стенкой камеры делают небольшим — около 1 мм. Такие смесители используют для смешения жидкостей с вязкостью 0,5—500 Па-с. К двухроторным относятся также смесители с зацепляющимися роторами, вращающимися с одинаковой скоростью. Двухроторные смесители широко используют для изготовления наполненных пластмасс, а также для смешения различающихся по вязкости жидкостей и паст. [c.369]


    Приведенные на рис. VI.16, й данные показывают, что вязкость растворов мономеров в условиях ламинарного режима течения жидкости не зависит от скорости взаимного перемещения ее слоев и остается постоянной в интервале изменения этой скорости от О до Шкр. Лишь при превышении скорости потока над критической скоростью, когда режим течения жидкости сменяется на турбулентный, вязкость растворов с увеличением скорости взаимного перемещения их слоев возрастает. [c.300]

    Это различие в законах изменения коэффициента к связано с тем, что непосредственное влияние вязкости жидкости на сопротивление в турбулентном потоке гораздо меньше, чем в ламинарном. Если в последнем потери напора на трение прямо пропорциональны вязкости (см. 1.22), то в турбулентном потоке, как это следует из формул (1.55) и (1.95), эти потери пропорциональны вязкости в степени 1/4. Основную роль в турбулентном потоке играют перемешивание и перенос количеств движения. [c.98]

    Решение. Задаемся течением, основываясь на вязкости жидкости так как решение существенно различно для ламинарного и турбулентного течения. [c.140]

    Из уравнения (2.30) следует, что теоретический папор, выраженный в метрах столба подаваемой жидкости, не зависит от рода жидкости [в уравнении (2.30) отсутствуют величины, характеризующие физические свойства жидкости]. Гидравлические потери являются функцией Ке и, следовательно, зависят от вязкости жидкости. Однако, если Ие велико и имеет место турбулентная автомодельность потоков в рабочих органах насоса, то гидравлические потери, и следовательно, папор насоса, выраженный в метрах столба подаваемой жидкости, от рода жидкости не зависят. Поэтому график напоров характеристики лопастного насоса одинаков для разных жидкостей, если потоки в рабочих органах насоса автомодельны. [c.192]

    Для турбулентного потока статистические свойства тензора градиентов скорости, а также старших производных от скорости определяются микромасштабными характеристиками турбулентности и описываются, согласно теории А. Н. Колмогорова [55], двумя размерными параметрами коэффициентом кинематической вязкости жидкости V и средней локальной скоростью диссипации энергии е. Отношение членов, содержащих вторые производные от скорости обтекания, к членам, пропорциональным градиентам скоростей, в разложении поля скоростей вблизи частицы в ряд Тейлора будет порядка или а Е /v) / где а — радиус частицы, Е = О (е /г /г) мера средней локальной скорости растяжения-сжатия, характеризующая поле турбулентного течения [13]. Величина 1/2 E Jv представляет собой число Рей- [c.104]

    При равных условиях применения они меньше по габаритным размерам и массе, чем ламинарные. Кроме того, при турбулентном режиме течения жидкости зависимость сопротивления потоку от вязкости жидкости и соответственно от температуры жидкости и окружающей среды значительно меньшая, чем при ламинарном. У турбулентного дросселя сопротивление потоку регулируется изменением площади проходного сечения рабочей щели (отверстия). Конструктивное исполнение регулируемых дросселей зависит от условий применения. Известны регулирующие элементы гидродросселей в виде конических деталей, поворотных кранов с прорезями, золотников с поясками и др. (1, 8]. [c.48]

    Используя соотношения, аналогичные закону вязкости Ньютона и закону Фурье (см. Переноса процессы), вводят коэф. турбулентной вязкости t и турбулентной температуропроводности Eq (в м2/с), к-рые, в отличие от имеющих ту же размерность коэф. мол. диффузии Dab, температуропроводности а и кинематич. вязкости v, не являются физ.-хим. характеристиками и зависят от параметров осреднен-ного движения жидкости и положения рассматриваемого элемента ее объема в потоке. [c.601]

    Ламинарный подслой — слой газа (жидкости), непосредственно прилегающий к стенке, в котором турбулентная проводимость и турбулентная вязкость малы по сравнению с молекулярной проводимостью и вязкостью, Обычно толщина этого слоя г/= 5. [c.14]

    Опыты, проведенные с трубами разных диаметров и с жидкостями различных вязкостей и температур, показали, что характер движения жпдкостй зависит от диаметра трубопровода, скорости движения, физических свойств жидкости и ее температуры. Большие скорости движения кидкостп, значительные диаметры труб и малые вязкости жидкости обусловливают турбулентное движение, малые же скорости, небольшие диаметры труб и большие вязкости — ламинарное движение. [c.34]

    Скорости этих перемещений и т. Вследствие неустойчивости пульсации первого порядка на них накладываются пульсации второго порядка, имеющие масштаб X" < X, и пульсационные скорости и" < и. Такой процесс последовательного измельчения пульсаций происходит до тех пор, пока для пульсаций некоторого порядка I число Не,- = A,oM, /v не окажется достаточно малым, чтобы ощутимое влияние вязкости жидкости предупреждало образование пульсаций I + 1 порядка. Величина называется внутренним (минимальным) масштабом турбулентности. Число Не,-для внутреннего масштаба имеет порядок единицы. При этих значениях Йе энергия мелкомасштабных турбулентных пульсаций благодаря вязкости диссипируется в тепловую. Хотя энергия диссипации и обусловливается в конечном итоге вязкостью жидкости, ее величину Е характеризуют крупномасштабные пульсации. В частности, она равна потере энергии самых крупномасштабных движений на создание движений меньшего масштаба. Учитывая это, а также ничтожную роль вязкости, можно считать, что основными параметрами, характеризующими свойства турбулентного потока жидкости, являются ее плотность р и энергия диссипации Е. В соответствии с этим скорость турбулентных пульсаций по закону Колмогорова—Обухова , [c.58]

    Критерий Не является, мерой соотноитшя междц силами вязкости и инерции в движущемся потоке (строгое обоснование вида этого критерия и его физического смысла дано ниже, стр. 79). В самом деле, вероятность нарушения ламинарного режима течения и возникновения хаотического перемещения частиц тем больше, чем меньше вязкость жидкости, препятствующая этому нарушению, и чем больше ее плотность, представляющая собой меру инерции отклонившихся от прямолинейного движения частиц. Поэтому при равных скоростях движения различных жидкостей в трубах одинакового диаметра турбулентность возникнет тем легче, чем больше р и меньше 1, или чем меньше кинематическая вязкость V .1/р. Соответственно критерий Рейнольдса может быть записан в виде [c.41]

    Приведенные расчетные уравнения получены для изотермических условий течения жидкости. При иагреваиии или охлаждении движущейся жидкости через стенки трубы в результате изменения температуры меняется и вязкость жидкости по сечению трубы. Это вызывает некоторое изменение профиля срсоростей по данному сечению и, соответственно, изменение величины к. Особенно существенно влияние теплообмена на величину к при ламинарном режиме течения, когда поперечное перемешивание жидкости отсутствует и градиент температуры по поперечному сечению трубы в основной массе жидкости значительно выше, чем в турбулентном потоке. [c.89]

    Нами получены численные решения уравнений Навье-Стокса как для ламинарного, так и турбулентного движения жидкости с эффективной вязкостью в рамках к-Е модели турбулентности в двумерной постановке в плоскости расположения мешалки. Проведенные методом конечных элементов расчетьт позволяют пpoaнaJШЗиpoвaть влияние основных конструктивных размеров, частоты вращения мешалки и характеристик среды на эффективность перемешивания в полимеризаторе. Визуализация векторного поля скоростей показывает, что между лопастями мешалки возникает циркуляционное движение жидкости (рис.З), которое является более выраженным для турбулентного режима, а у краев лопасти наблюдаются значительные градиенты давления и скорости. [c.85]

    Тэйлби и Портальский [14] исследовали образование волн при течении различных жидкостей (воды, водных растворов глицерина, метанола, изопропанола) по вертикальным пластинам при этом значение Reж изменялось от 4 до 4000. При Яе Же волны появлялись на некотором расстоянии к (равном нескольким сантиметрам) от верхней кромки пластины и покрывали всю нижележащую поверхность пластины. С увеличением Не, величина /г возрастала, достигая при турбулентном режиме постоянного значения (около 30 см). Увеличение вязкости жидкости также приводит к возрастанию к. При движении воздуха противотоком или прямотоком к текущей пленке величина к уменьшалась тем сильнее, чем выше скорость воздуха. [c.344]

    Потери энергии при турбулентном течении жидкости в трубах постоянного сечения (т. е. потери напора на трение) также получаются иными, нежели при ламинарном. В турбулентном потоке потери напора на трение зяа Чйтельно больше, чем в ламинарном при тех же-р 1змерах трубы, расходе и вязкости жидкости, а следо-в1ггель1 0, при одинаковых Ве [c.97]

    Различные виды кривых потребного напора для ламинарного (а) и турбулентного (б) течений показаны на рис. 1.96. Крутизна кривой зависит от сопротивления трубопровода к и возрастает с увеличением длины трубопровода и уменьшением диаметра, а также с уве.пичением местных гидравлических сопротивлений в трубопроводе. Кроме того, при ламинарном течении наклон кривой (которую для этого тече-1ШЯ можно считать прямой) изменяется пропорционально вязкости жидкости. [c.139]

    В зависимости от характера течения жидкости соотношение между X и Ттурб различно. Это аналогично течению в трубах, где предельными случаями являются ламинарный режим движения жидкости (ттурб) и квадратичная зона турбулентного режима (т = 0). Последнее равенство указывает на факт независимости гидравлических сопротивлений (или что то же самое производительности при заданном перепаде давления) от вязкости жидкости, Аналогом этому является течение жидкости в насосе при Ке 7000, когда наступает область автомодельности для зависимости kQ = f Q). Здесь кд принимает значение, равное единице. В общем случае с уменьшением числа Ке гидравлические сопротивления в проточных каналах рабочего колеса возрастают, приводя тем самым к уменьшению подачи насоса. Для заданных типа и размеров это имеет место при увеличении вязкости перекачиваемой жидкости. [c.86]

    Принятые допущения необходимо считать верными, поскольку теория Колмогорова получила надежное экспериментальное подтверждение. Итак, на основе этой теории можно заключить, что в установившемся потоке в гладком канале энергия пульсационного дв,ижения пополняется в связи с большим градиентом скорости у стенки, который, в свою очередь, является следствием вязкости жидкости и трения о стенку. Осредненный поток пополняет эту энергию вследствие падения статического давления (гидравлические потери). Поэтому для такого потока при данном числе Рейнольдса степень турбулентности, а также 8д и е т практически однозначно определеньь 18 [c.18]


Смотреть страницы где упоминается термин Турбулентная вязкость жидкостей: [c.107]    [c.235]    [c.235]    [c.56]    [c.553]    [c.553]    [c.169]    [c.22]    [c.42]    [c.86]    [c.184]    [c.60]    [c.299]    [c.32]    [c.494]   
Основные процессы и аппараты Изд10 (2004) -- [ c.47 , c.404 , c.405 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.48 , c.49 , c.426 , c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость турбулентная

Жидкости вязкость



© 2025 chem21.info Реклама на сайте