Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость при взаимном влиянии

    Таким образом, центробежная компрессорная машина, состоя-ш,ая из одной или многих ступеней, аналогичных описанным, представляет собой сложный комплекс параллельно и последовательно соединенных вращающихся и неподвижных каналов различной степени диффузорности с различным характером силового поля и с различной степенью неравномерности профиля скоростей в поперечных сечениях. Заметим, что рассмотрение центробежной машины как системы каналов вовсе не значит сведение теории этих машин к элементарной канальной теории одномерных потоков. Перечисленные особенности каналов центробежной машины обусловливают ряд сложных явлений и процессов, отличных от тех, которые имеют место в обычных неподвижных каналах аналогичной степени диффузорности. Сюда прежде всего относится пространственный характер потоков внутри отдельных каналов, неравномерность полей скоростей по сечению, взаимное влияние отдельных участков проточной части с различным характером силового поля. [c.10]


    Рассмотрение взаимодействия компонентов тяжелого нефтяного сырья с водородом показывает, что все виды гетеросоединений и вое группы углеводородов могут подвергаться глубоким химическим превращениям в процессе каталитической переработки под давлением водорода. При переработке различных видов сырья глубина превращения каждого из компонентов в значительной мере зависит от состава сырья, т. е. от присутствия в зоне реакции других компонентов. Взаимное влияние присутствующих в сырье соединений связано с их различной способностью адсорбироваться на поверхности катализатора. Некоторые соединения, например серо- и азотсодержащие, ароматические углеводороды (особенно конденсированные), обладают повышенной адсорбционной способностью. При этом их устойчивость в условиях реакции и скорость взаимодействия с водородом весьма различны. В результате наиболее устойчивые и медленно реагирующие соединения с повышенной адсорбционной способностью могут блокировать поверхность катализатора и препятствовать превращениям других компонентов сырья. Глубина превращения компонентов сырья и направление основных реакций определяются условиями процесса и видом катализатора. [c.303]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]


    Результаты численного решения уравнения (9.76) в виде зависимости y=f Т/Е) при некоторых значениях произведения приведены на рис. 9.4. Сопоставление графиков на рис. 9.2 и рис. 9.4 показывает, что для случая реакции второго порядка сохраняется аналогичный механизм взаимного влияния скорости реакции и скорости массопередачи. [c.177]

    При изучении таких сложных смесей углеводородов, как нефтяное сырье, очень важно определить относительные скорости и преобладающие направления превращений углеводородов и выявить их взаимное влияние в условиях гидрокрекинга. К сожалению, лишь в одной работе [55] приводятся относительные константы скоростей реакций, протекающих на второй ступени гидрокрекинга легкого циркулирующего крекинг-газойля при давлении водорода 105 ат. Катализатор, однако, не указывается. Относительные константы скоростей этих реакций показаны на рис. 14. При выбранных условиях процесса происходит интенсивное частичное гидрирование полициклических ароматических углеводородов, рас- [c.48]

    Выражения (11.86)—(11.89), полученные в работах [26, 76], имеют очень большое значение для изучения массопередачи при соизмеримых сопротивлениях в фазах. Прежде всего, становится очевидным, что имеет место взаимное влияние фазовых сонротивлений, а также влияние материального баланса массопередачи на скорость процесса. В этих условиях для расчета скорости массопередачи неприменима формула аддитивности, которая предполагает квазистационарный характер процесса. [c.211]

    При предельно точном расчете скорости массо- и теплопередачи следует учитывать такие явления, как термодиффузия и диффузионная теплопроводность, возникающие при наложении и взаимном влиянии процессов переноса вещества и тепла, а также изменение физических свойств реагирующей смеси под влиянием химических [c.105]

    К третьему уровню иерархии относятся явления, связанные с процессом взаимодействия системы кристалл — несущая (сплошная) фаза. Наглядную картину структуры связей ФХС демонстрирует обычно диаграмма взаимных влияний физических и химических явлений системы. При построении такой диаграммы ФХС представляем в виде набора элементов и их связей. При этом узлам диаграммы ставятся в соответствие отдельные явления или эффекты в системе, а дугам — причинно-следственные связи между ними (рис. 1). Растущая кристаллическая частица движется в объеме сплошной фазы под действием сил сопротивления, инерционных, тяжести, подвергаясь одновременно воздействию механизма переноса массы ПМ, энергии ПЭ и импульса ПИ через границу раздела фаз в направлении 1- 2 (где 1 означает принадлежность к сплошной фазе, 2 — к кристаллу). Процесс кристаллизации на частице идет при неравновесии химических потенциалов вещества в несущей фазе и в частице Д , неравновесности по температурам фаз Ат скоростной неравновесности А , т. е. при несовпадении скоростей фаз. Поэтому естественно принять, что рассматриваемая неравновесность гетерогенной системы и обусловливает совокупность явлений, составляющих механизм межфазного переноса при кристаллизации. Причем неравновесность гетерогенной системы в целом (по Ац, Ат, А ) обусловливает в качестве прямого эффекта (сплошные дуги) перенос массы через поверхность в направлении 1- 2 (дуги 1, 2, 3). Каждый вид неравновесности обусловливает прежде всего перенос соответствующей субстанции (дуги 4, 5) и одновременно оказывает перекрестное или косвенное влияние (пунктирные дуги) на перенос других субстанций (для ПЭ — дуги 6, 9 для ПИ — дуги 7, 8). [c.8]

    При возрастании концентрации дисперсной фазы скорости осаждения эмульгированных частиц начинают уменьшаться за счет их гидродинамического взаимодействия друг с другом. Начинают реализоваться условия так называемого стесненного осаждения, закономерности которого для полидисперсных эмульсий еще недостаточно изучены. Имеющиеся результаты являются либо полуэмпирическими, либо получены для наиболее простых моделей осаждения, в которых используется предположение о монодисперсности оседающих частиц. Одна из первых работ по моделированию стесненного осаждения частиц была сделана Карманом. Он предложил модель для расчета скорости осаждения в высококонцентрированных дисперсных системах ( 1 >0,2). Для систем с меньшей концентрацией (Ц7< 0,2) Бринкманом [15] были получены результаты, хорошо согласующиеся с опытными данными. Заслуживает внимания также ячеечная модель [16], в которой система диспергированных частиц представлена в виде правильной структуры, а взаимное влияние частиц учитывается граничными условиями, заданными на поверхности эффективных жидких сфер, охватывающих каждую частицу. [c.14]

    Необходимым условием химического взаимодействия различных веществ, составляющих гомогенную систе.му, является столкновение их молекул. Только ирн столкновении молекулы попадают в с4 сру взаимного влияния электрических нолей, возбуждаемых той нли иной заряженной частицей другой молекулы. Тогда, очевидно, что скорость химического взаимодействия должна определяться числом столкновений различных молекул в единицу времени. Од- [c.89]


    Заметим, что сформировавшийся в результате взаимного влияния слоя входных и выходных устройств профиль скорости Vz при прохождении через слой почти не меняется. [c.153]

    Наличие конвективного теплообмена изменяет распределение скоростей в потоке по сравнению с распределением в случае изотермического потока. Вместе с тем распределение температур определяется полем скоростей. Это обстоятельство взаимного влияния температурного и скоростного полей необходимо учитывать при точном решении задачи о конвективном теплообмене, если вязкость жидкости сильно изменяется с температурой. [c.162]

    Особенность химико-технологических процессов в том, что они протекают с высокими скоростями, при высоких температурах и давлениях в многофазных системах. Это определяет их сложность, большое число параметров, многочисленность связей между ними и взаимное влияние параметров друг на друга внутри ХТС. [c.138]

    Современные процессы химической технологии отличаются высокими скоростями протекания при высоких температурах и давлениях в многофазных системах, поэтому их детальное описание представляет большую сложность. Эта сложность проявляется в значительном числе и многообразии параметров, определяющих течение процессов, в большом числе внутренних связей между параметрами, в их взаимном влиянии, причем изменение одного параметра часто вызывает нелинейное изменение других параметров [23]. В результате на процесс накладываются возмущения, статистически распределенные во времени. [c.138]

    Экспериментальные данные [56] показывают, как велико взаимное влияние твердых частиц газового потока друг на друга при транспорте. В прямоточном аппарате твердые частицы и транспортирующий агент текут совместно, но каждый со своей скоростью. Если происходит снижение скорости твердых частиц в каком-либо участке прямоточного аппарата, то на этом участке возрастает количество твердой фазы, приходящееся на единицу длины трубопровода. В результате увеличивается сечение, занимаемое твердой фазой, и возрастает скорость при постоянном расходе газа, так как уменьщается рабочее сечение аппарата. Таким образом движение массы твердых частиц автоматически снова ускоряется, благодаря чему восстанавливается прежнее состояние системы. , [c.179]

    Содержащиеся в цементном порошке минералы гидратируются с относительной скоростью, соответствующей их химической активности. Быстрее других протекает гидратация трехкальциевого алюмината, а остатки зерен белита длительное время (иногда десятки лет) сохраняются в цементном камне. Кроме того, содержащиеся в портландцементном порошке минералы оказывают взаимное влияние на скорость гидратации друг друга. [c.104]

    Это соотношение устанавливает связь прямых и обратных микроскопических процессов и требует одинакового взаимного влияния двух сил на чужие потоки. Это соотношение может быть выведено из важного принципа микроскопической обратимости, который носит также название принципа детального равновесия. Согласно этому принципу, при равновесии скорости прямого и обратного процессов равны по любому возможному пути. Если возможен прямой путь, то возможен н обратный и при равновесии скорости процессов по этим путям должны быть равны. Б гл. II [c.419]

    Дело в том, что стехиометрический принцип эквивалентности паев, которым руководствовались все до-бутлеровские теории и который явился лишь одним из исходных принципов теории химического строения, требует тождественности всех межатомных связей. Но если бы природа соблюдала эти требования, то энергия каждой простой межатомной связи, образованной за счет замыкания двух единиц сродства , была бы одинакова а это означало бы, что все химические превращения происходят с одинаковой энергией активации, одинаковой скоростью и при определенных условиях являются идеально обратимыми. Химическая активность всех соединений в одних и тех же условиях была бы одинаковой Однако в действительности дело обстоит иначе есть вещества самой различной активности, и А. М. Бутлеров это обстоятельство не только отметил, но и объяснил различием их химического строения, понимая под этим различием, во-первых, бесчисленные возможности изменения свойств одного п того же элемента при переходе его из соединения в соединение под влиянием других элементов и, во-вторых, широко варьируемую энергетическую неэквивалентность (сродствоемкость) химических связей. Поэтому идеи об энергетической неэквивалентности химических связей, обусловленной взаимным влиянием атомов, являются главным содержанием теории А. М. Бутлерова. [c.87]

    Сопротивление связи разрыву зависит от взаимного влияния атомов и групп, от экранирующего действия атомов, расположенных вблизи менее прочных связей. Цепная реакция разложения полимеров, следуемая после разрыва цепи (инициирования), протекает с различной скоростью в зависимости от химического строения макромолекул, каталитического или ингибирующего влияния продуктов разложения. [c.80]

    Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой молекулярной цепи настолько удалены друг от друга, что взаимное влияние становится ничтожно малым. Вследствие этого некоторые участки молекулярной цепи при растворении (когда подвижность и гибкость цепи возрастает) и при процессах деформации полимера ведут себя как кинетически самостоятельные единицы. Такие участки молекулярной цепи называют сегментами. Размер участка молекулярной цепи, проявляющего кинетическую независимость (сегмента), не является постоянной и зависит от гибкости молекулярной цепи и условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения нагрузки прн деформации). Благодаря подвижности отдельных сегментов молекулярной цепи при их тепловом движении макромолекула непрерывно меняет свою форму конформацию), и так как число возможных конформаций изогнутой молекулы очень велико, а вытянутая только одна, то макромолекула большую часть времени имеет изогнутую форму, что очень важно для понимания особенностей свойств растворов и процессов деформации полимеров. [c.44]

    Качественно суть этого явления можно пояснить следующим образом. Если в составе по крайней мере одного из свободных радикалов, образовавшихся в клетке, имеется парамагнитное ядро, расположенное в достаточной близости от неспаренного электрона, то создаваемое этим ядром локальное магнитное поле будет оказывать существенное влияние на скорость взаимных переходов между синглетным и триплетным состояниями пары. При этом ядра в разных спиновых состояниях создают разное магнитное поле и по-разному влияют па скорость этих переходов. Поэтому соотношение продуктов внутриклеточного и внеклеточного превращений будет различным ири разных спиновых состояниях ядер. В простейшем случае, если спии ядра равен 1/2, возможно два ядерных спиновых состояния, В результате одно из этих состояний будет преобладать в продуктах внутриклеточной рекомбинации или внутриклеточного диспропорционирования, а другое — в продуктах внеклеточных превращений свободных радикалов . В магнитном поле, в том числе при записи спектров ЯМР, в одном из продуктов (или в одной группе продуктов) будут преобладать ядра со спинами, ориентированными по направлению магнитного поля, т. е. находящиеся на более низком энергетическом уровне, а в другом продукте (группе продуктов) — ядра, ориентированные против направления поля, т. е, находящиеся на более высоком энергетическом уровне. Таким образом, ядерные [c.174]

    Влияние близости стенки [70—72] на характер обтекания жидкостью отдельных частиц не представляет особой важности в движущихся системах с множеством частиц. Во-первых, эффекты взаимного влияния частиц (разд. 2.10) имеют более важное значение, поскольку они распространены по всему потоку. Во-вторых, для течения вблизи стенки характерна высокая скорость сдвига в жидкости, и это обычно приводит к тому, что более важными становятся силы, рассмотренные в разд. 2.7.5. [c.42]

    Интересен также анализ массопередачн с химической реакцией, когда скорость суммарного явления стадий 2—4 лимитирует процесс. Поэтому в книге главным образом проводится анализ взаимного влияния этих трех стадий, которые протекают совместно в фазе 2 под действием общей движущей силы, обусловленной тем, что один или несколько реагентов непрерывно переносятся из фазы 2 в фазу 1. Предполагается, что в любом случае вклад явления массопереноса в общее сопротивление массопереноса в пределах фазы 1 учитывается отдельно. [c.13]

    Отсутствие взаимного влияния хемосорбированиого оксида углерода может быть объяснено разбавлением электрондефицитных платиновых центров неактивными частицами платины, связанной с серой, а также распределением их по ее поверхности среди акцепторных центров носителя. Повышение электронной дефицитности платины вследствие промотирования катализатора серой приводит к ослаблению связи Р1- С при хемосорбции молекул углеводорода и к подавлению реакций, для которых такая хемосорбция определяет скорость, например для реакции гидрогенолиза. [c.57]

    Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]

    Принципиально для каждого конкретного процесса может быть выбрана оптимальная конструкция реакторного устройства при любых критериях оптимизации этого процесса. Однако для этого необходимо пметь точные данные о влиянии конструкции реактора на физические процессы в системе и о взаимном влиянии физическпх и химических процессов. Настоящая глава посвящена рассмотрению вопроса, который является одним из важнейших при выборе конструкции реактора,— вопросу о влиянии конструктивных факторов на скорость межфазного массо- и теплообмена. [c.244]

    Объемная доля дисперсной фазы составляет обычно 4—12% от свободного объема контактного аппарата. Среднее расстояние между частицами дисперсной фазы равно при этом 1—2 диаметрам частицы (средняя величина). Поэтому принципиально может иметь место взаимное влияние частиц и скорость массопередачи может отличаться от скорости лшссоиередачи между сплошной средой и единичной каплей. [c.246]

    Пока нет теоретического объяснения такого увеличения скорости гетерогенных каталитических реакций в жидкой фазе по сравнению с газовой. Можно предполагать, что это явление в какой-то мере связано с тем, что жидкость является иолуупорядоченной системой , к которой неприменимы принципы классической химической кинетики, базирующейся на теории столкновений и кинетической теории газов. Вследствие существования ближнего порядка в расположении молекул, т. е. их определенной ориентации и взаимного влияния, возможно, что понижение энтропии АЗ при образовании активированного комплекса реагентов с катализатором составляет незначительную величину это резко сказывается на скорости процесса (см. раздел 1.1). Точно так же объединение молекул в сольватацион-ные комплексы может сопровождаться понижением энергии активации реакции, подобно тому, как это имеет место при интермолекулярных превращениях. [c.42]

    При изучении переалкилирования толуола алкилбензолами [206, с. 808] было установлено различие относительных скоростей переноса алкильных групп нормального строения по сравнению с заместителями изоструктуры. Различия практически не наблюдаются в случае я-диалкилбензолов, что, очевидно, обусловлено взаимным влиянием алкильных групп. Скорость переноса этильной группы превышает скорости миграции групп R всех заместителей, в то время как для алкилбензолов она занимает промежуточное положение Аизо-с<,н7 > в ор-с н9 > [c.189]

    Для выяснения физического механизма генерации низкочастотных колебаний узлов ГПА проведены расчеты корреляционных характеристик колебаний для различных подшипниковых узлов ГПА и установлено наличие связи между ними. Следовательно, низкочастотные колебания могут возникать вследствие периодического перераспределения интенсивности колебаний между подшипниковыми опорами роторов турбоагрегата. Другим возможным механизмом возбуждения колебаний может быть взаимное влияние близко расположенных роторов ТНД и ТВД, вращающихся с разными (но близкими) скоростями. В этом случае на подщипниковые опоры будет действовать периодическая сила с частотой, равной разгюсти частот вращения роторов ТВД и ТНД, что составляет 1- 10 Гц. При наличии зазоров в подшипниках происходит возбуждение субгармоник с еще более низкими частотами. [c.162]

    Теоретическое рассмотрение кинетики гетерогенных процессов показало, что скорость реакции может контролироваться образованием заряженного активированного комплекса [22]. В этих случаях заряжение поверхности катализаторов под действием каких-либо факторов, например хемосорбции, должно оказывать существенное влияние на протекание реакции. Так, исследование [23] заряжения поверхности некоторых окисных катализаторов (ЗпОг—ЗЬгОб ЗпОа) при адсорбции смесей пропилена и кислорода показало различие во взаимном влиянии реагентов. Взаимное [c.29]

    Сопоставление вышеприведенных работ по кинетике гидрогено-лиза глюкозы, сорбита и глицерина показывает различие (иногда существенное) в полученных результатах, которое, очевидно, объясняется (помимо отличий в методике кинетического эксперимента) использованием разных концентраций катализатора и крекирующего агента. Таким образом, полученные в каждой из работ константы скорости, значения энергии активации, предэкспоненци-альные множители имеют локальное значение, так как привязаны к фиксированным значениям остальных параметров. Дальнейшие исследования кинетики этого сложного процесса целесообразно направить на определение истинных порядков реакции каждой из стадий, исследование щелочного ретроальдольного расщепления глюкозы, взаимного влияния концентраций катализаторов гидрирования, расщепления и гомогенных сокатализаторов, влияния дезактивации катализатора в ходе процесса и других факторов. Когда математическая модель будет учитывать влияние всего десятка факторов, воздействующих на выход целевых продуктов при гидрогенолизе, ее можно будет применить для целей оптимизации и управления. [c.131]

    Сложным является также результат взаимного влияния удельного сопротивления пыли и скорости миграции. Так Спраулл [790] обнаружил, что эффективная скорость миграции исследуемой цементной пыли в одноступенчатом электрофильтре снизилась от 0,15 до 0,035 м/с при увеличении удельного сопротивления пыли от 10 до 10 Ом-м (кривая АА на рис. Х-14), в то время как в двухступенчатом электрофильтре эффективная скорость миграции поддерживалась приблизительно постоянной 0,10 м/с (кривая ВВ). [c.476]

    Моор и Стригалева (97) изучали крекинг смесей пропилена с бутадиеном и пропилена с изобутиленом при атмосферном давлении. Они нашли, что при крекинге смеси пропилена с изобутиленом взаимное влияние обоих газов на скорость реакции очень незначительно и последняя близка к скорости реакции этих газов в чистом состоянии. При крекинге же смеси ироиилена с бутадиеном последний вызывает увеличение скорости реакции крекипга пропилена. При этом увеличение скорости крекинга пропилена растет пропорционально концентрации бутадиена. Скорость крекинга пропилена в присутствии 10% бутадиена увеличивается в 2,5 раза, а в присутствии 50% бута- [c.219]

    Из этого сопоставления ясно видно экраиируюш,ее действие заместителей. Меньшая скорость гидрирования непредельных кислот по сравнению с олефинами указывает, кроме того, на экрани-руюш,ее влияние карбоксильной группы и взаимное влияние атомов. [c.357]

    При переходе от кислот к щелочам происходят изменения в характере адсорбции водорода и кислорода, формах адсорбции, энергиях связи и т. д. вследствие взаимного влияния ионов двойного слоя, атомов водорода и кислорода друг на друга. Поскольку Наде И Оадс Либо Принимают непосредственное участие в адсорбционно-десорбционных процессах, либо сильно влияют на их скорости как частицы, конкурирующие за адсорбционные места, изменение характера адсорбции водорода и кислорода с ростом pH оказывает существенное влияние на хемосорбцию органических веществ. Поэтому при сохранении в первом приближении вида зависимостей величин адсорбции от Ег при переходе от кислот к щелочам имеют место и определенные изменения (иногда значительные) в кинетике адсорбции, в составе продуктов хемосорбцин. Резко выделяются в этом отношении предельные углеводороды, которые в щелочах вообще практически сорбируются. [c.115]

    Что касается взаимного влияния активных элементов, то для ряда простейших систем (вращающийся диск и кольцо, вращающийся двухкольцевой электрод, два электрода в канале, в трубке, на поверхности конуса или клина) было теоретически показано, что это влияние обусловлено только геометрическим фактором и не зависит от скорости движения раствора. Толщина диффузионного слоя изменяется вдоль активной части электрода. [c.140]

    Выше рассматривались случаи, когда сама реакция служила причиной возникающих отклонений от равновесия. Ei последнее время интенсивно развиваются физические методы стимулирования газофазных реакций, в частности лазерная накачка в ИК-диапазоне. При решении задач этого направления принципиальное значение имеют вопросы кинетики заселенностей и, в частности, колебательной кинетики, так как любое воздействие на вещество (тепловое, химическое, электронный удар, оптическая накачка) приводит к перераспределению заселенности уровней, которые определяют кинетику и механизм химических реакций. Широко проводимые в настоящее время исследования касаются самых различных аспектов кинетики в существенно неравновесных условиях и включают а) изучение вида функций распределения по ко.пебательным уровням б) определение общей скорости релаксации колебательной энергии в) нахождение зависимости неравновесного запаса колебательной энергии от скорости накачки вненпшм источником, приводящим к разогреву колебаний г) анализ взаимного влияния колебательной релаксации и химического процесса (диссоциация молекул, бимолекулярная реакция компонент смеси), а также, например, генерации на колебательно-вращательных переходах. [c.66]

    В действительности природа эффекта трансвлияния очень сложна и, конечно, сам эффект является суммарным, включая все аспекты взаимного влияния лигандов и трансляцношюй способности центрального иона. Сложная и не до конца раскрытая природа закономерности трансвлияния проявляется не только в том, что для каждого центрального иона (из числа ПЭ) имеется своя последовательность изменения силы трансвлияния, но и в существовании цисвлияния . Этот эффект был открыт известными советскими исследователями комплексов платины А. А. Гринбергом и Ю. Н. Кукушкиным [10] при изучении скорости обмена ионов хлора в тетрахлороплатинате(П) на аммиак. Удалось вычленить две стадии обмена. На первой стадии (с [c.163]

    Таким образом, ЫНз в моноаммиакате лабилизирует связь с атомом С1, находящимся по отношению к ЫНз в цисположении. Это проявляется в увеличении константы скорости второй стадии обмена и указывает на сложный характер взаимного влияния всех лигандов, координированных центральным атомом (ионом). [c.164]

    Обычно, исходя из методических соображений, изложение теории электрокинетических явлений начинают с анализа скорости взаимного смещения фаз под действием внешнего электрического поля в дальнейшем на этой основе могут рассматриваться и все остальные электрокинетические явления. При этом нужно учитывать геометрические особенности системы, в частности соотношение размеров частиц дисперс ной фазы, расстояния между ними и толщшюй ионной атмосферы. Кроме того, наличие частиц дисперсной фазы может ока 1ывать влияние на характер расположения силовых линий внешнего электрического поля в дисперсной системе. [c.230]

    При решении задач, связанных с массопередачей, сначала выбирают безразмерные комплексы и определяют их число. Согласно известной я-теореме оно равно числу рассматриваемых величин минус число использованных элементарных размерностей — L, Т, М. Смысл теоремы выявится из приводимого ниже рассмотрения задачи обтекания твердого тела газом или жидкостью. Подобные задачи возникают при анализе таких процессов, как восстановление руд, выщелачивание, взаимодействие двух жидкостей (металл и шлак) или жидкости и газа (продувка конверторов, вакуумирование). Скорости процессов, зависящих от массопередачи, выражают при помощи коэффициента р. Естественно считать, что р зависит от скорости потока а, размера обтекаемого тела d, коэффициента диффузии реагента D и таких свойств газа или жидкости, как вязкость т] и плотность р, т. е. число рассматриваемых величин равно шести. Взаимное влияние параметров выражается уравнениями, в которых неизвестные численные значения являются показателями степеней параметров. Таким образом, произведения параметров в соответствующих степенях и составляют безразмерные комплексы, характеризующие массопередачу при данных условиях. Напомним размерности рассматриваемых величин Р—l/T", а—LIT, d—L, D—L IT, r —MILT, p—MJL . Теперь покажем, что в нашем случае число безразмерных комплексов в соответствии с я-теоремой действительно равно трем (6—3 = 3). С этой целью введем безразмерный комплекс К с шестью неизвестными х, у, z, т, п и t  [c.257]


Смотреть страницы где упоминается термин Скорость при взаимном влиянии: [c.251]    [c.80]    [c.182]    [c.111]    [c.191]    [c.66]    [c.139]    [c.258]    [c.408]   
Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.125 , c.128 ]




ПОИСК







© 2025 chem21.info Реклама на сайте