Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селен, полимеры

    В зависимости от того, построены ли макромолекулы неорганических полимеров из атомов одного или различных элементов, они называются соответственно гомоцепными и гетероцепными полимерами. Представители первых—селен и теллур цепочечного строения, а также модификации черного фосфора и мышьяка, имеющие слоистые решетки (гл. IV, 5). Типичные гетероцепные полимеры — аморфные двуокись кремния и поликремниевая кислота, природные и синтетические силикаты, полифосфорные кислоты, полифосфаты  [c.392]


    Гомоцепные полимеры будут рассмотрены в том порядке, в каком находятся в периодической системе составляющие их элементы. Насколько можно судить но имеющимся литературным данным, снособностью образовывать гомоцепные полимеры отличаются следующие элементы бор, углерод, кремний, германий, олово, фосфор, мышьяк, сурьма, висмут, сера, селен и теллур. [c.328]

    Образованию аморфного вещества при кристаллизации жидкости способствуют следующие факторы увеличение скорости охлаждения, понижение симметрии кристаллизующихся частиц, усложнение кристаллической структуры и повышение энергии связи между частицами, повышение вязкости жидкости. При низких скоростях охлаждения аморфными получаются обычно сложные полимерные структуры (сера, селен, кремнезем, силикатные стекла, многие шлаки, органические полимеры). [c.300]

    Полимеры, в состав которых не входят атомы углерода, получили название неорганических. Среди неорганических полимеров много природных типа полисиликатов. Некоторые элементарные вещества являются полимерами (селен, теллур и др.). В настоящее время широко ведутся исследования с целью получения синтетических неорганических полимеров. [c.392]

    Характер химической связи и особенности структуры свидетельствуют о возможности появления у неорганических полимеров полупроводимости. Действительно, из перечисленных полимеров полупроводниками являются селен, теллур, некоторые модификации фосфора и мышьяка. [c.490]

    Способность образовывать полимерные молекулы достаточно ясно выражена у таких элементов, как бор, углерод, кремний, фосфор, сера, мышьяк, германий, селен, сурьма, висмут и теллур. Среди всех элементов периодической системы углерод выделяется своей уникальной способностью образовывать необычайно длинные цепи карбоцепных полимеров, остальные перечисленные выше элементы обладают этой способностью в значительно меньшей степени. Способиость образовывать достаточно прочные гомоцепные полимеры зависит от прочности связей атомов данного элемента друг с другом. [c.325]

    Стекловидный (черный) селен получается быстрым охлаждением расплавленного селена (например, при выливании его в воду) в виде твердого хрупкого вещества со стеклянным блеском. Цвет го меняется от красно-коричневого до голубовато-черного. Плотность 4,28 г/см . При нагревании постепенно размягчается. Стекловидный селен является полимером циклической структуры наряду с кольцевыми молекулами Se содержит кольца из очень большого числа атомов селена (порядка 1000). [c.94]


    Способность к образованию полимеров неодинаково выражена у различных элементов В то время как бор, углерод, кремний, фосфор, сера, германий, селен и т. д. обладают этой способностью, у таких элементов, как кислород и азот, она отсутствует. Однако если в молекулярной цепи атомы кислорода или азота чередуются с атомами бора, кремния или алюминия, легко можно получить гетероцепные полимеры. Среди таких полимеров наиболее многочисленными типами являются окислы, нитриды, карбиды и бори-ды к ним примыкают широко распространенные в природе силикаты и другие кремнийсодержащие высокомолекулярные соединения. [c.346]

    Известны полимерные соединения, содержащие кислород, серу и селен, а также хром, молибден, вольфрам и уран. Так как полимеры кислорода, серы и селена относятся к карбоцепным или гетероцепным органическим соединениям, то мы не будем их здесь рассматривать (см. гл. 2 и 3). [c.308]

    В табл. 36 указаны важнейшие свойства гомоцепных нолимеров как линейных, так и иространственных. Линейными полимерами являются полимерные сера, селен и теллур, а также карбин и многочисленные произ- [c.328]

    Селен существует в нескольких формах, из которых полимерными являются аморфный и гексагональный селен [73, 95—97]. В расплавленном селене, так же как и в сере, наблюдается равновесие между восьмизвенными циклическими формами и линейным полимером [53, 98]  [c.334]

    Селен является линейным полимером [99, 100], однако эластические свойства он имеет только в интервале температур 70—90° С. [c.334]

    Для исследований полимеров в инфракрасной области спектра обычно применяют поляризаторы отражающего или пропускающего типа хлористое серебро, селен [c.369]

    В стеклообразное состояние склонны переходить вещества, способные образовать полимеры как простые по структуре (сера, селен, окись бора , сульфиды, селениды и теллуриды мышьяка и др.), так и содержащие сложные анионы цепочечной и слоистой структуры (силикаты, бораты, фосфаты и др.). [c.155]

    Получены полимеры, содержащие в своем составе элементы VI группы периодической системы, в. частности селен. [c.365]

    На рис. 1 наглядно показано, что элементы, способные к образованию полимеров, расположены между металлами и элементами, не образующими полимеров. К числу способных к полимеризации элементов относятся бор, углерод, кремний, германий, фосфор, сера, мышьяк, сурьма, селен, висмут и теллур. [c.402]

    Как уже упоминалось выше, к числу общеизвестных неорганических гомоцепных полимеров относятся полимерный бор, углерод, кремний, германий, фосфор, сера, селен, мышьяк, сурьма, висмут и теллур. [c.406]

    Селен, так же как и сера, образует линейные цепные полимеры. Опубликованы статьи, содержащие данные об исследовании селена [681—685]. [c.420]

    Селен по своим свойствам весьма близок к сере. Он также образует линейный ценной полимер — ангидрид селенистой кислоты, построенный аналогично серному ангидриду [354]  [c.359]

    Все это выяснено в последние десятилетия, и не исключено, что по мере развития науки о неорганических полимерах многие величины и цифры еш,е будут уточняться. Это относится не только к селену, но ж к сере, теллуру, фосфору — ко всем элементам, существуюш,им в виде гомоцепных полимеров. Повторяем, эта наука делает лишь первые шаги. [c.135]

    По своим свойствам сера и селен в значительной степени сходны. Это сходство проявляется уже в том, что в жидком состоянии оба элемента существуют в виде полимеров с довольно длинными цепочками, что показано, например, измерениями вязкости обеих жидкостей. Однако существует глубокое различие в строении полимеров в жидком состоянии. Как уже описано выше, сера при температуре плавления (112,8°С или П5,2°С в зависимости от модификации) переходит в жидкость с относительно низкой вязкостью, состоящую почти исключительно из колец Ss. Около 160°С вязкость начинает резко увеличиваться благодаря появлению длинных цепочек. В отличие от кристаллической серы гексагональный (металлический) селен состоит из линейных длинных цепочек, поэтому не удивительно, что при температуре плавления (217°С) он переходит в жидкое состояние, имеющее то же строение. Другие модификации селена, которые целиком или частично состоят из колец Ses, при, плавлении также образуют жидкость полимерного строения, и вязкость жидкого селена равномерно уменьшается с увеличением температуры. Поэтому в отличие от серы для жидкого селена не существует области температур, в которой он присутствовал бы исключительно в виде колец Ses, и, следовательно, температура перехода селена должна быть ниже его температуры плавления. [c.239]

    Длинные гомоатомные цепи (со степенью полимеризации и 100) образуют лишь углерод и элементы VI гр.-8, 8е и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей 8, 8е и Те различны. Линейные полимеры утлерояг-кумулены =С=С=С=С=. .. и карбин —С=С—С=С—... (см. Углерод) кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы-соотв. графит и алмаз. Сера, селен и теллур образуют атомные цепочки с простыми связями и очень высокими п. Их полимеризация имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную иижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы. [c.214]


    Но для геохимиков особенно важны соединения висмута с серой, селеном и теллуром. Среди минералов висмута (а их насчитывается больше 70) больше всего сульфидов и теллуридов. Такие минералы имеют большое практическое значение. В последние годы все более уверенно начинают говорить о сульфидах висмута как о типично комплексных соединениях, а иногда и как о неорганических полимерах. В самом деле, один из самых распространенных минералов элемента № 83, висмутин В гЗз, легко представить как сочетание ионов [В18]+ и [В182] . В природных условиях висмутин встречается в виде хорошо ограненных серебристых кристаллов. [c.277]

    Четыреххлористый титан в хлороформе, хлорное олово (полимер, полученный с этим катализатором, дегидрогенизуется селеном в 1,2,5-триметилнафталин при 280—340°) [c.476]

    Политетрафторэтилен из всех виниловых полимеров наиболее устойчив в отношении термодеструкции, однако, как было отмечено Флорином и Уоллом с сотр. [115], его термостойкость лишь примерно на 100° превышает термостойкость полиэтилена. Этот факт до некоторой степени неожидан, так как известно, что энергии диссоциации связей С — С и С — F в молекуле политетрафторэтилена значительно больше, чем энергии диссоциации связей С — С и С — Н в молекуле полиэтилена. Поэтому на основании данных о структуре, а также результатов кинетических исследований термодеструкции политетрафторэтилена указанные авторы предложили несколько методов повышения термостойкости этого полимера. Пытаясь исключить присутствие на концах цепей лабильных центров, у которых может происходить инициирование, они осуществляли синтез препаратов политетрафторэтилена при использовании в качестве инициаторов наряду с обычно применяющимися для этой цели агентами таких веществ, как нерфтордиметилртуть, нерфторметилиодид и газообразный фтор. Эти авторы предположили также, что реакция, обратная росту цени и приводящая к образованию мономера, может быть блокирована введением в молекулы полимера агентов передачи цепи или просто путем смешивания таких веществ с политетрафторэтиленом. Для этой цели они использовали серу, селен, а также ряд соединений, содержащих углеводородные и фторуглеводородные группы, в основном ароматического характера, которые вводили обычно в виде соответствующих дибромидов в полимеризующуюся реакционную смесь. Однако ни одним из этих способов не было получено полимера, отличающегося по скорости термодеструкции от обычного политетрафторэтилена. В связи с этим [c.57]

    В головке цроисходнт формова ие расплавленного полимера, выходящего из экструдера, в изделие с требуемым пог еречным сечением. Внутри головки проходит канал, селение которого меняется от круглого (с диаметром, разным внутреннему диаметру цилиндра экструдера) на входе до соответствующего профилю изделия на выходе. Л" п оценки картины течения расплава- в таком канале необходимо знать вязкость расплава при соответствующих градиентах скорости и температурах, а также зависимости, связывающие значения вязкости с величинами расхода и давления в различных сечениях канала. Суммируя перепады давления ка отдельных участках канала, можно подсчитать обшцй перепад давления в головке и расход потока. [c.158]

    Способность к образованию гомоцепных неорганич. полимеров обнаружена у следующих элелюнтов бор, углерод, кремний, германий, фосфор, мышьяк, сурьма, висмут, сера, селен, теллур и олово, т. е. у сравнительно небольшого числа элементов, имеющих характер неметаллов. Число элементов, способных к образованию гетероцепных полимеров, значительно больше. Доказательство высокомолекулярного хя1рактера тех или иных неорганич. соединений часто сильно затруднено, т. к. не всегда удается найти подходяш,ий растворитель, в к-ром эти соединения растворялись бы без заметной деструкции и в к-ром проявляли бы себя как высокомолекулярные вещества. Заключение [c.351]

    Элементарный селен (любая модификация ) — это го-моцепной неорганический полимер. Естественно, что лучше всего изучен термодинамически устойчивый серый селен. Это полимер с винтообразными макромолекулами, уложенными параллельно. В цепях атомы связаны ковалентно, а молекулы-цепи объединены молекулярными силами и частично — металлической связью. [c.134]

    В полиэтилене, селене и низкомолекулярном полиоксиэтилене обратимость процесса плавления — кристаллизации нарушается при равновесной температуре плавления. Однако каждый из указанных полимер имеет свои особенности перегрева. Математическое описание перегре ва пока отсутствует. Была предпринята попытка [256] описать кине- тику процесса плавления кристаллов линейных полимеров по аналогии с плавлением кристаллов низкомолекулярных соединений и жесткоцепных полимеров. В соответствии с указанным TeopeTH4e KHN рассмотрением кристаллы полимеров должны перегреваться больше, [c.306]

    Полярографический метод применяют для определения хлорид-ионов в самых разнообразных объектах в титане [350], тантале 1801], селене [64], уране [688] и его солях [426], сульфате цинка и цинковом электролите [207], монокристаллах ( d r2Se4) [91], люминофорах на основе сульфидов кадмия и цинка [223, 224], кислотах (серной [970, 1068], фосфорной [46, 970], хлорной [970]), в смесях с другими галогенидами [294, 523], полимерах [860], природных водах и солях [90], сточных водах [230, 782], водно-метаноль-ных смесях [737], биологических объектах [436]. [c.109]


Смотреть страницы где упоминается термин Селен, полимеры: [c.16]    [c.373]    [c.404]    [c.373]    [c.284]    [c.324]    [c.89]    [c.165]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.420 , c.480 ]




ПОИСК







© 2025 chem21.info Реклама на сайте