Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Терефталевая кислота полиарилаты

    В инфракрасных спектрах жидких продуктов деструкции полиарилата ТД, полученных при температуре 450° С, были обнаружены обрывки цепей полиарилата, а также свободные дифенилол-пропан и терефталевая кислота, образовавшаяся при распаде полиарилата. [c.251]

    Заместители у центрального углеродного атома бисфенола Полиарилаты на основе терефталевой кислоты Полиарилаты на основе изофталевой кислоты  [c.168]


    Однако этого, как уже было нами показано на стр. 140, не происходит. Кроме того, специально поставленный опыт показал, что молекулярный вес полиарилата фенолфталеина и терефталевой кислоты (полиарилат Ф-2) практически не изменяется, если через его раствор в условиях, аналогичных синтезу полимера низкотемпературной ноликонденсацией в растворе, пропускать ток сухого хлористого водорода (хлористый водород пропускали в раствор хюли-арилата Ф-2 в дихлорэтане концентрации 0,2 моль/л при 50 °С в течение 30 мин.). [c.165]

    В табл. 2.4 в качестве примера приведены данные по деструкции полиарилата фенолфлуореном, хлорангидридом терефталевой кислоты и более низкомолекулярным полиарилатом того же строения. Полученные результаты показывают, что, несмотря на сравнительно высокую хемостойкость полиарилатов в условиях, соответствующих их синтезу, они подвержены алкоголизу, фенолизу, обмену за счет хлорангидридной функции [55, 57]. Интересно, что во всех случаях наблюдается увеличение начальных скоростей деструкции полиарилата в присутствии хлористого водорода по сравнению со скоростями деструкции, проводимой в инертной атмосфере. Поскольку полиарилат, как было отмечено выше, не деструктируется хлористым водородом - низкомолекулярным продуктом поликонденсации, такое ускорение может быть отнесено на счет его каталитического действия. Изучение фракционного состава поли-9,9-бис(4-гидроксифенил)флу-орентерефталата и его изменения в процессе протекания отмеченных выше различных деструктивных и обменных реакций показало, что во всех случаях проявляется тенденция к сужению молекулярно-массового распределения (ММР). Это позволяет считать, что оно обусловлено как переходом системы в новое равновесное состояние с меньшей молекулярной массой, так и большей склонностью больших молекул к деструкции [57]. [c.12]

    С 60-х годов был выполнен ряд исследований по кинетике и механизму поликонденсации хлорангидридов дикарбоновых кислот с бисфенолами в растворе при нагревании, приводящей к образованию интересных с практических позиций теплостойких полимеров, названных полиарилатами [4, 14, 26, 56, 67, 69а, 143-151]. Однако результаты этих исследований неоднозначны. Наиболее детально изучено взаимодействие дихлорангидрида терефталевой кислоты с 9,9-бис(4-гидроксифе-нил)флуореном и 4,4 -(гексагидро-7-метилениндан-5-илиден)дифенолом [144, 148], осуществляемое в условиях, типичных для синтеза полиарилатов высокотемпературной поликонденсацией (150-200°С, среда дитолилметан, динил или нитробензол). Оказалось, что по начальным скоростям реакция имеет полуторный порядок первый - по бисфенолу и половинный - по хлорангидриду. Анализ кинетических данных и результатов измерения электропроводности системы показал, что взаимодействие протекает по ионному механизму. [c.36]


Рис. 4.2. Изменение приведенной вязкости раствора полиарилата в ТХЭ в процессе акцепторнокаталитической полиэтерификации дихлорангидрида терефталевой кислоты с фенолфталеином в присутствии ТЭА (в ДХЭ ) Рис. 4.2. <a href="/info/321030">Изменение приведенной</a> <a href="/info/5997">вязкости раствора</a> полиарилата в ТХЭ в процессе акцепторнокаталитической полиэтерификации <a href="/info/127952">дихлорангидрида терефталевой кислоты</a> с фенолфталеином в присутствии ТЭА (в ДХЭ )
Рис. 4.6. Зависимость константы скорости этерификации о-хлорфенола с п-хлорбензо-илхлоридом (7) и приведенной вязкости полиарилата из бис-(4-гидрокси-3-хлорфенил)-2,2-про-лана и дихлорангидрида терефталевой кислоты в ТХЭ (2) от температуры реакции (в толуоле, ТЭА) Рис. 4.6. <a href="/info/366508">Зависимость константы скорости</a> этерификации о-хлорфенола с п-хлорбензо-илхлоридом (7) и <a href="/info/717861">приведенной вязкости</a> полиарилата из бис-(4-гидрокси-3-хлорфенил)-2,2-про-лана и <a href="/info/127952">дихлорангидрида терефталевой кислоты</a> в ТХЭ (2) от <a href="/info/6340">температуры реакции</a> (в толуоле, ТЭА)
    Интересные результаты были получены при изучении влияния температуры на молекулярную массу полиарилатов, получаемых акцепторно-каталитической полиэтерификацией в гомогенной системе [161, 219]. Оказалось, что если в качестве исходных мономеров использовать высокореакционноспособные соединения и проводить процесс в присутствии сильного основания (например, поликонденсация дихлорангидрида терефталевой кислоты с дихлордианом в присутствии ТЭА в среде ДХЭ), то зависимость молекулярной массы полимера от температуры реакции имеет вид кривой с двумя максимумами, что, по-видимому, обусловлено поли-экстремальной зависимостью констант скорости роста полимерной цепи от температуры процесса. Переход к малоактивным исходным соединениям и малоосновным третичным аминам нивелирует эту зависимость. [c.90]

    При межфазной поликонденсации анилида фенолфталеина с хлорангидридом терефталевой кислоты (органическая среда - бензол), когда образование полимера происходит на границе двух жидких фаз, и он нерастворим ни в одной из них, получается полиарилат с ярко выраженной глобулярной структурой, в то время как полиарилат, синтезированный высокотемпературной поликонденсацией в гомогенной среде (в а-хлорнафталине), имеет фибриллярный тип надмолекулярной структуры. И если первый полимер имеет температуру размягчения 280-285 °С, прочность на разрыв 960 кгс/см , относительное удлинение при разрыве 13% и удельную [c.107]

    При синтезе кристаллизующихся кардовых полиарилатов [19, 20, 52], например полиарилата 9,9-бис(4-гидроксифенил)антрона-10 (фенолантрон) и терефталевой кислоты, условия проведения процесса (температура реакции, скорость нагревания и охлаждения реакционной массы, концентрация и др.) влияют не только на молекулярную массу получаемого полимера, но и на его структуру. В наиболее кристаллической форме этот полиарилат получается при проведении поликонденсации при 220 °С (в соволе, а-хлорнафталине, нитробензоле). Проведение процесса выше 220 °С приводит к полиарилатам с меньшей степенью упорядоченности. В аморфной форме полиарилат образуется в соволе при 330 °С (с быстрым нагревом и охлаждением реакционной массы). Концентрация исходных мономеров при этом должна быть -0,6 моль/л при увеличении концентрации уже не удается получить аморфный полимер. [c.108]

    Был вьшолнен цикл исследований по изучению закономерностей образования полиарилатов фенолфталеина акцепторно-каталитической поликонденсацией [8, 63-68]. Прежде всего следует отметить, что синтез полиарилатов этим методом протекает быстрее и в более мягких условиях, чем в случае высокотемпературной поликонденсации в растворе. В частности, при поликонденсации фенолфталеина с дихлорангидридом терефталевой кислоты в присутствии ТЭА в ДХЭ при 50 °С через 5 мин образуется полимер с выходом, близким к количественному, и с приведенной вязкостью 11, = -0,9 дл/г (в ТХЭ) [65]. [c.108]

    Для поликоиденсации фенолфталеина с дихлорангидридом терефталевой кислоты в присутствии ТЭА было выявлено влияние на акцепторно-каталитическую поликонденсацию природы реакционной среды [66, 67]. Установлено, что отсутствие полной растворимости исходных соединений в реакционной среде является существенным препятствием для получения высокомолекулярного полимера. На величину молекулярной массы образующегося полимера значительное влияние оказывают такие свойства реакционной среды, как ее полярность, способность растворять исходные реагенты и полимер. Найдены оптимальные величины полярности реакционной среды и ее способности вызывать набухаемость полимера, при которых создаются благоприятные условия для синтеза высокомолекулярных полиарилатов в гетерогенных условиях. При исследовании зависимости молекулярной массы образующегося полимера от состава бинарной реакционной смеси (смесь ацетона с бензолом) оказалось, что полиарилат с наиболее высокой молекулярной массой получается при содержании в реакционной среде 30-40 об.% ацетона. В этой среде удалось синтезировать полиарилат с очень высокой молекулярной массой - 250000, Г р = 10 дл/г (в ТХЭ) [67]. Вообще же оптимальными условиями синтеза полиарилатов акцепторно-каталитической полиэтерификацией в гетерогенных условиях являются хорошая растворимость исходных соединений в реакционной среде, значительная набухаемость полимера в малополярной среде или высокая полярность среды, когда набухаемость полимера в растворителе незначительна [58, 66-70]. [c.108]


    Она значительно превышает теплостойкость близких по химическому строению полиарилатов, не содержащих кардовых группировок. Так, температура размягчения полиарилата терефталевой кислоты с фенолфлуореном 350 °С, в то время как у политерефталата 4,4 -дигидроксидифенилдифенилметана она составляет 280 °С. [c.161]

    Наличие алкильных заместителей в орто-положении к гидроксильной группе бисфенола способствует как бы внутренней "пластификации" полиарилатов на их основе [187-191]. Полиарилаты терефталевой кислоты и таких бисфенолов имеют более низкие температуры размягчения (например, температура размягчения полиарилата 3,3 -диметил-4,4 -дигидроксидифенил-2,2-пропана 180 °С), большее сопротивление ударной нагрузке и легче перерабатываются в монолитные изделия, чем полиарилаты незамещенных в циклах бисфенолов. [c.161]

    В ряде работ рассмотрены термические свойства приведенных выше полиарилатов на основе бис(4-карбоксифенил)карборанов [15, 30, 104, 109-111, 113]. Согласно данным ДТГА, на воздухе карборансодержащие полиарилаты при нагревании начинают изменяться в массе на 20-60° выше по сравнению с обычными полиарилатами. Для карборансодержащих полиарилатов характерно более медленное протекание процессов деструкции, причем в ряде случаев на термогравиметрических кривых наблюдаются участки замедления или прекращения деструкции в области от 600 до 650 °С. Следует отметить характерную для полиарилатов бис(4-карбоксифенил)карборана высокую массу коксового остатка (от 50 до -90% от первоначальной массы полимера) при нагревании их на воздухе до 900 °С, тогда как обычный полиарилат терефталевой кислоты и фенолфлуорена сгорает нацело уже при 650-700 °С. [c.264]

    РАБОТА 46. ПОЛУЧЕНИЕ ПОЛИАРИЛАТА ИЗ ГИДРОХИНОНА И ДИХЛОРАНГИДРИДА ТЕРЕФТАЛЕВОЙ КИСЛОТЫ В НИТРОБЕНЗОЛЕ [c.111]

    Особую группу полимерных сорбентов составляют полимерные жидкие фазы, химически связанные с носителем, или полимеры, синтезированные непосредственно на поверхности носителей или адсорбентов 192—105] дурапаки, представляющие собой силикагели, химически связанные с полиспиртами [92, 93], зипаксы и пермафазы — стеклянные шарики с поверхностным слоем силикагеля, химически связанного с полимерными жидкими фазами, имеющими различные функциональные группы 194, 103], полиэфир-ацетали, связанные с силанольными группами кислых кремниевых носителей [104], полиарилаты, получаемые путем высокотемпературной поликонденсации фенолфталеина и изофталевой или терефталевой кислот на поверхности крупнопористых силикагелей [105]. [c.20]

    Полиарилаты — сложные полиэфиры терефталевой кислоты и бисфенола А — получают межфазной поликонденсацией дихлорангидрида терефталевой кислоты с бис-фенолом А [c.698]

    Полиарилаты, полученные на основе ароматических дикарбоновых кислот, не претерпевают никаких видимых изменений структуры и свойств даже после длительного прогревания при температурах до 200 °С [3]. Исследование процессов старения полиарилатов на основе фенолфталеина и терефталевой кислоты (Ф-2), а также 9,9-бис-4-оксифенил-флуорена и терефталевой кислоты (Д-9) при малых степенях превращения (250-350 °С) показало [18-21], что и при термической, и при термоокислительной деструкции преобладают процессы структурирования. Глубина структурирования полиарилатов в значительной степени зависит от их химического строения. Так, в сл5 ае полиарилата Ф-2 максимальное количество нерастворимой фракции составляет 98%, а в [c.285]

    В работе [32] отмечается, что на процессы ветвления и структурирования оказывает влияние изомерия ароматического ядра кислотной компоненты. На термические превращения полиарилатов [32] (а также полиимидов [33-34]) влияют не только строение входящих в цепь группировок, но и их взаимное расположение. Так, полиарилаты на основе 4,4 -дифенилфталиддикарбоновой кислоты термически более устойчивы, чем соответствующие им изомеры (по положению лактонного цикла относительно карбонильной группы) на основе фенолфталеина как в условиях динамического, так и изотермического нагревания разница в температурах начала разложения на воздухе составляет 50-60 °С. Термостойкость полиарилатов на основе фенолфталеина с дифенилено-выми фрагментами в полимерной цепи выше, чем у полиарилатов, полученных на основе одноядерных ароматических исходных компонентов изофталевой и терефталевой кислот, резорцина, гидрохинона. Введение дифенильного фрагмента как в фенольную, так и в кислотную компоненту повышает и гидролитическую устойчивость полиарилатов. [c.287]

    Наряду с исследованием влияния химического строения, в работе [35] показано влияние морфологии полиарилатов на их термические свойства. Так, теплостойкость полиарилата фенолантро-на и терефталевой кислоты можно варьировать, изменяя режим синтеза и условия последующей обработки полимера. Она существенно возрастает при переходе от аморфного полиарилата к по- [c.287]

    Синтезирован ряд смеш-анных полиарилатов, что позволяет изменять их свойства в широком диапазоне [129, 130, 277]. Среди них оообенно интересными являются смешанные полиарилаты терефталевой кислоты, диана и таких многоатомных спиртов, как глицерин, триметилолпропап или пентаэритрит. Эти полимеры способны при дальнейшей соответствующей обработке переходить в неплавкое и нерастворимое состояние [134]. [c.231]

    Получен ряд смешанных полиарилатов, свойства которых изменяются в широком диапазоне . Среди них особенно интересными являются смешанные полиарилаты терефталевой кислоты, диана и таких многоатомных спиртов, как глицерин, триметилолпропан или пентаэритрит. Эти полимеры способны переходить в неплавкое и нерастворимое состояние при дальнейшей сготретствующей обработке . [c.111]

    Исследовано также влияние условий проведения поликонденсации хлорангидрида терефталевой кислоты с дианом на выход и молекулярный вес полиарилата 2° . Наилучшие результаты (выход 76—80%, [т1] = 0,65) были получены при проведении процесса при 100—220° С в растворе дитолилметана в токе азота при концентрации раствора исходных веществ 0,6— 1,0 мол/л при эквимолекулярном соотношении исходных веществ. В последнее время было установлено, что синтез некоторых видов полиарилатов, например на основе фенолфталеина, может быть с успехом осуществлен при проведении поликонденсации в концентрированных растворах, если в качестве растворителя использовать соединения типа совола (хлорированный дифенил) и др. [c.194]

    Ценным свойством полиарилатов являются их высокие диэлектрические показатели, сохраняющиеся без изменения в широком интервале температур 2217. 24.4426 величине диэлектрической проницаемости (в = 3,2—3,5) пленки полиарилатов диана, фенолфталеина близки к полиэтилентерефталату. Преимуществом полиарилатных пленок по сравнению с полиэтилентерефталатом и поликарбонатом диана является незначительное изменение тангенса угла диэлектрических потерь (tg б) и удельного объемного сопротивления в интервале температур от —60° до 4-200° С и даже выше и более высокие значения удельного объемного сопротивления при 175—200° С. Тангенс угла диэлектрических потерь полиарилатов диана в интервале температур от —60° до —200° С не превышает 4— 5 10- , а для полиарилатов фенолфталеина 5—8 10- в интервале температур от —60° до —250° С. Максимум дипольно-эластических потерь полиарилатов располагается в области более высоких температур, чем у полиэтилентерефталата и поликарбоната диана. Так, если максимум б у полиэтилентерефталата приходится на 140° С, у поликарбоната диана на 200° С, то у смешанного полиарилата изофталевой, терефталевой кислот и диана состава 0,15 0,85 1 молей он приходится на 250° С, а у полиарилатов Ф-1 и Ф-2 не наблюдается еще и при 300° С. [c.262]


Смотреть страницы где упоминается термин Терефталевая кислота полиарилаты: [c.317]    [c.62]    [c.331]    [c.79]    [c.81]    [c.82]    [c.109]    [c.114]    [c.264]    [c.157]    [c.823]    [c.317]    [c.172]    [c.15]    [c.96]    [c.195]    [c.196]    [c.260]    [c.260]    [c.141]   
Прогресс полимерной химии (1965) -- [ c.232 , c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Полиарилаты

Полиарилаты терефталевой кислоты и фенолфталеина

Терефталевая кислота

Терефталевая кислота полиарилаты, стереорегулярные



© 2024 chem21.info Реклама на сайте