Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектрах окиси углерода па металлах

    Адсорбция даже таких простых газов, как водород, кислород, азот и окись углерода, на переходных металлах представляет собой весьма сложный процесс, поскольку в ходе адсорбции образуется несколько связанных форм. Об этом, в частности, убедительно говорят спектры термодесорбции водорода, азота и окиси углерода с поверхности поликристаллического вольфрама (рис. 10). Слабо связанные состояния водорода и азота имеют, по-видимому, молекулярный характер и образуются в результате взаимодействия с переносом заряда, в то время как несколько прочно связанных состояний являются атомарными. Существование нескольких хемосорбционных состояний отчасти может быть следствием кристаллографической неоднородности поверхности поликристаллического адсорбента. Однако это не единственная причина, поскольку такая же сложная картина наблюдается при адсорбции на поверхностях. [c.25]


    Для массивных образцов, помимо влияния грани кристалла, установлено влияние размера металлических частиц. Так, в ИК-спектрах окиси углерода, адсорбированной на тонко диспергированных переходных металлах, наблюдается усиление интенсивности полос поглощения окиси углерода в области низких частот [28]. Это явление объясняется хемосорбцией на центрах, расположенных в вершинах кристаллитов, где происходит, как полагают, упрочнение связи металл—углерод и одновременное ослабление и поляризация карбонильной группы. Влияние размера частиц обнаружено и в случае адсорбции азота на никеле, палладии и платине, нанесенных на окись алюминия и двуокись кремния [29]. Усиление интенсивности полос поглощения наблюдается при адсорбции азота (предположительно в молекулярной форме) на частицах диаметром менее 7 нм. [c.27]

    В третьей статье, написанной Р. Эйшенсом, ИК-анализ хемосорбированных молекул и его современное состояние описываются новейшие экспериментальные результаты, полученные с помош,ью инфракрасной спектроскопии молекул, адсорбированных на металлических поверхностях. Объектами исследования служат гексены на никеле, а также окись углерода на платине и на родии. Описывается индукционный эффект носителя. В качестве металлических поверхностей служат пленки (изучаемые по спектрам поглощения и спектрам отражения) и полированные металлы. Для последних описываются также результаты, полученные с пленками стеарата кальция и олеиновой кислоты. Следует указать, что применение ИК-спектро-скопии к изучению катализа успешно развивается в СССР академиком А. Н. Терениным и другими учеными. [c.6]

    Случай окиси углерода почти также сложен, как и случай с кислородом. Окись углерода почти немедленно диснронорционируется на активной поверхности никеля, давая уголь и углекислый газ. Окись углерода так же, как и водород, приводит к уменьшению намагничивания сверхпарамагнитного никеля. При давлении выше нескольких долей миллиметра наклон изотермы намагничивание— объем почти равен наклону изотермы для адсорбции водорода на том же образце. Эйшенс показал, что окись углерода при малых насьщениях поверхности, вероятно, присутствует в виде поверхностных структур типа кетон-ных группировок некоторых карбонилов металлов. Это следует из данных инфракрасных спектров и находится " в согласии с магнитными данными, которые также приводят к мысли о существовании двух связей углерод — никель при адсорбции молекулы окиси углерода. Для адсорбции очень важны данные инфракрасной спектроскопии они показывают, что молекулы окиси углерода образуют линейные структуры, т. е. что каждый атом углерода связан только с одним атомом никеля. Для насыщенной поверхности магнитные данные не дают оснований утверждать о каком-либо изменении типа связей. Однако это не противоречит нашему выводу о том, что при образовании связи между окисью углерода и атомом никеля должен происходить слабый переход электронов между атомом углерода и никелем. Магнитный метод не дает возможности различить, связана ли молекула окиси углерода с двумя атомами никеля или с одним. В соответствии с этим мы можем принять, что и магнитные данные и данные инфракрасных спектров не расходятся для одного и того же насыщения поверхности. Магнитный метод не лимитируется концентрацией адсорбата в мертвом пространстве, в то время как для метода инфракрасной спектроскопии необходимо поддерживать в мертвом пространстве небольшое давление. В магнитном методе возможно повысить давление до 1 атм и выше. Если работать при повышенном давлении в случае адсорбции окиси углерода на никеле, то изотерма намагничивание — объем становится почти параллельной оси объемов, что должно указывать на внезапное изменение типа связи в области высоких давлений. Однако вопрос осложняется тем, что [c.26]


    Р и с. 5. Инфракрасные спектры оки-сп углерода, хемосорбированноп па различных металлах. [c.17]

    Эйшенс и Плискин (1958) первыми исследовали полосу поглощения колебания по связи металл — углерод (непосредственная связь между металлом и адсорбированной молекулой окиси углерода). Все другие спектры давали валентные колебания связи внутри адсорбированной молекулы. Интенсивное поглощение применявшимися ранее носителями 8102 и А12О3 маскировало большие области спектра, включая и те, в которых должно было наблюдаться валентное колебание связи металл — углерод. Эйшенс и Плискин преодолели эту трудность, адсорбируя окись углерода на ненанесенных частицах платиновой черни, которые затем для записи спектра запрессовывались в диски из КВг. [c.74]

    Блайхолдер рассмотрел природу связи между поверхностным атомом металла, адсорбирующим окись углерода, и его бли кай-пшми соседями в объеме металла. Он показал, что между рассматриваемым атомом металла и окрун ающими атомами металла осуществляется л-связь за счет частично заполненных -орбиталей металла. Таким образом, окись углерода в качестве лигандов будет конкурировать за -электроны центрального атома металла. При обсуждении спектров карбонилов металлов ранее было показано, что заместители, которые не участвуют в образовании л-связи с атомом металла, повышают прочность л-связи между атомом металла и окисью углерода. При увеличении л-характера связи металл — углерод порядок связи углерод — [c.76]

    Наблюдавшиеся спектры (рис. 64) лучше всего могут быть объяснены на основе теории, предложенной Блайхолдером (19646). Согласно этой теории, центры на ребрах и углах граней поликри-сталлической поверхности металла — наиболее активные центры хемосорбции окиси углерода. Атомы металла в этих положениях имеют меньше соседей, чем атомы металла в плоскости граней кристаллитов. Б результате атомы мета.тла на углах криста.тлитов имеют больше -электронов, доступных для образования я-связи с адсорбированными молекулами окиси углерода, и поэтому л-характер и прочность связи металл — углерод возрастали. ] анее было показано, что частота валентного колебания связи углерод — кислород у карбонилов металла смещается к более низким значениям по мере увеличения вклада л-связи во взаимодействие между атомами металла и углерода. Окись углерода, ответственную за появление полосы поглощения карбонильной грунны нри самых низких частотах, считали поэтому адсорби- [c.259]

    Изменения в спектре окиси углерода, адсорбированной нанесенной на кремнезем платиной, при добавлении к пей водорода (рис. 21) сходны с изменениями, наблюдавшимися при нанесении металла на окись алюминия (рис. 66). Адсорбция водорода, как предполагал Блайхолдер (19646), сопровождается частичной передачей электронов металлу. Это допускало возможность значительно большего участия -электронов платины в адсорбции окиси углерода, проявлявшегося в понижении частоты колебания карбонильной группы. О других наблюдениях влияния различных носителей сообщили Эйшенс и Плискин (1958). В процессе приготовления платиновых катализаторов хлороплатиновая кислота восстанавливалась водородом, и было найдено, что более легко восстановление происходит при нанесении 51еталла на кремнезем, чем па окись алюминия. Окись углерода, адсорбированная на платине, легче окислялась нри использовании в качестве носителя кремнезема. Последний результат согласуется с выводом [c.264]

    Влияние предварительной адсорбции сероуглерода на адсорбцию окиси углерода металлическим никелем, нанесенным на окись алюминия, было исследовано Гёландом (1959). Спектр окиси углерода на неотравленном образце никеля при увеличении покрытия поверхности показан на рис. 68, а. За исключением небольших различий в частотах, приведенный спектр подобен полученному Эйшенсом, Френсисом и Плискином (1956). Гёланд полагал, что низкочастотная полоса поглощения принадлежит мости-ковому соединению окиси углерода, однако более вероятно, чго она относится к линейному соединению окиси углерода, прочно удерживаемому центрами на углах и ребрах граней поликристал-лической поверхности металла (Блайхолдер, 19646). Полоса поглощения при 2075 см , вероятно, обусловлена поглощением молекул окиси углерода, связанных с центрами в плоскости граней кристаллитов на поверхности металла. [c.269]

    Так как отражательная спектроскопия еще не стала достаточно многообещающей, исследователи в ряде лабораторий изучали спектры пропускания тонких напыленных пленок с переменным успехом. Полоса валентных колебаний связи С — О около 2000 см для хемосорбированной СО имеет необычайно высокий коэффициент экстинкции, и, следовательно, ее можно обнаружить там, где низкая интенсивность полос поглощения затрудняет проблему исследования. Поэтому окись углерода часто применяется при разработке новых методик, однако нужно помнить, что необходимо, чтобы данный метод обеспечивал достаточно интенсивную полосу поглощения хемосорбированной СО, если можно ожидать, что будут получаться также и спектры других соединений. Пленки обычно испаряют, наматывая небольшие количества напыляемого металла на вольфрамовую нить, нагреваемую электрическим током. Там, где это возможно, лучше проводить напыление металла, не применяя вольфрамовой подложки это позволит избежать осложнений из-за загрязнений вольфрамом. Если пленку наносят в вакууме на пластину из соли, получающаяся зеркальная пленка приводит к сопутствующим большим потерям излучения в результате отражения. Напыление в присутствии инертного газа при давлении от 0,5 до нескольких миллиметров ртутного столба дает слой металлической черни со средним размером частиц около 150 А в диаметре. Потери за счет отражения нри этом уменьшаются, однако слой металла рассеивает так много излучения, что образец, едва пропускающий такое количество из-пучепия, которое способен зарегистрировать спек-тролтетр, дает в ИК-спектре, например, хемосорбированной СО только слабые полосы валентных колебаний связи С — О. Спекание отдельных небольших частиц металла в крупные агрегаты является одной из причин того, что пленки метал.т1ической черни рассеивают больше излучения, чем это допустимо для получения подходящего пропускания. [c.346]


    Хейуорд [19] разработал интересный путь получения улучшенных спектров для СО, адсорбированной на напыленных пленках без подложки. Во время напыления оп использовал вместо инертного газа окись углерода, потому что она хемосорбируется еще до спекания и адсорбированный слой СО уменьшает спекание. Кроме того, он разработал методику напыления СаЕг наряду с металлом, так [c.346]

    На рис. 10 в качестве примера приведены кривые, иллюстрирующие влияние природы носителя на структуру газовых молекул, адсорбированных на диспергированных металлах. На этом рисунке кривая А представляет спектр окиси углерода, хемосорбированной на платине, нанесенной на кабосил, и кривая В — спектр СО, хемосорбированной на платине, нанесенной на 1-окись алюминия (алон-С). [c.28]

    Рассмотрим сначала результаты, полученные при исследовании адсорбции отдельных газов. Газообразная окись углерода имеет полосу поглощения у 2150 м . При адсорбции окиси углерода на закиси никеля при комнатной температуре появляются полосы 2050, 1985 и 1925 см и широкая полоса в области 1600—1700 смГ (кривые 1 на рис. 1 и 2). Согласно работам Р. Эйшенса и У. Плискина [4], по инфракрасным спектрам СО, адсорбированной на металлах, полоса 2050 должна быть приписана хемосорбированной молекуле окиси углерода, линейно связанной с одним поверхностным атомом никеля, а полоса 1985 см —молекуле окиси углерода, образующей мостиковую структуру с двумя поверхностными атомами металла. Эти авторы не обнаружили на закиси никеля инфракрасных спектров адсорбированных молекул окиси углерода [5]. М. Куртуа и [c.222]

    А.-а.а. применяют для определения ок, 70 элементов (гл. обр. металлов). Не определяют газы и нек-рые др. неметаллы, резонансные линии к-рых лежат в вакуумной области спектра (длина волны меньше 190 нм). С применением графитовой печи невозможно определять НГ, ЫЬ, Та, XV и 2г, образующие с углеродом труднолетучне карбиды. Пределы обнаружения большинства элементов в р-рах прн атомизацни в пламени 1-100 мкг/л, в графитовой печи в 100-1000 раз ниже. Абс. пределы обнаружения в послед- [c.217]

    Исследование хемосорбции окиси углерода на металлах и окислах металлов, нанесенных на силикагель или окись алюминия, весьма интенсивно проводили Эйшенс и сотр. (Эйшенс, Плискин и Френсис, 1954 Эйшенс, Френсис и Плискин, 1956 Эйшенс, 1956 Эйшенс и Плискин, 1957, 1958), Янг и Гёланд (1957) и Гё-ланд (1959). Интерпретацию полученных в этих исследованиях полос поглощения проводили на основе сопоставления со спектрами карбонилов металлов. [c.16]

    Подобными причинами могут быть объяснены изменения в спектре, вызванные спеканием родиевых частиц, нанесенных на окись алюминия (Янг и Гёланд, 1957). С увеличением размера кристаллитов при спекании уменьшалась доля молекул окиси углерода, прочно связанных с центрами на углах и ребрах кристаллитов, образующих поверхность металла, и соответственно уменьшалась относительная интенсивность полос ниже 2000 см . [c.261]


Смотреть страницы где упоминается термин спектрах окиси углерода па металлах: [c.250]    [c.75]    [c.79]    [c.270]    [c.234]    [c.272]    [c.77]    [c.250]    [c.327]    [c.89]    [c.442]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы углерода

окиои спектры

окиси спектры



© 2025 chem21.info Реклама на сайте