Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциированные жидкости молекулы

    Энергия взаимного притяжения молекул для всех указанных типов взаимодействия приблизительно обратно пропорциональна шестой степени расстояния между молекулами. Указанные взаимодействия в некоторых случаях приводят к ассоциации молекул жидкости (так называемые ассоциированные жидкости). Между молекулами ассоциированной жидкости образуются кратковременные непостоянные связи, К таким связям относится водородная связь, которая создается за счет электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (главным образом к атомам фтора, кислорода, азота, хлора) другой молекулы. [c.163]


    Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. На рис. 68 представлена зависимость температур плавления и кипения в ряду Н2О—НгЗ—НгЗе—НгТе от молекулярной массы соединений. В рассматриваемом ряду с ростом молекулярной массы обе характеристики закономерно увеличиваются. Резкое отличие свойств воды от свойств ее аналогов обусловлено увеличением средней молекулярной массы агрегатов (Н20) за счет ассоциации молекул Н2О вследствие образования водородных связей. Если бы вода не была ассоциированной жидкостью, она имела бы температуру плавления не [c.140]

    ВОДЫ, аммиака и других сильно ассоциированных жидкостей. Основной причиной ассоциации в этих случаях служит образование между молекулами водородной связи ( 25). [c.163]

    При охлаждении до -20,7° С циан сжижается в бесцветную сильно ассоциированную жидкость. Молекулы циана очень устойчивы. Разложение на свободные [c.363]

    И эта аномалия воды объясняется полярностью ее молекул. Вода— ассоциированная жидкость. Молекулы в ней, притягиваясь одна к другой разноименными электрическими полюсами, образуют группы из 2, [c.211]

    И эта аномалия воды объясняется полярностью ее молекул. Вода — ассоциированная жидкость. Молекулы в ней, притягиваясь одна к другой разноименными электрическими полюсами, образуют группы из 2, 3, 4 молекул. При нагревании воды теплота идет не только на ускорение движения молекул, как в случае неассоциированных жидкостей, но в значительной части и на разрушение ассоциаций молекул. [c.293]

    В ассоциированных жидкостях (вода, спирты, НР, карбоновые кис/тоты) помимо универсального ван-дер-ваальсового взаимодействия между молекулами существует еще специфическое взаимодействие, называемое водородной связью (Н-связью). Особенность такого взаимодействия состоит в том, что атом водорода, входящий в состав одной молекулы (К1А—Н), образует вторую, обычно более слабую связь с атомом В другой молекулы (ВЯа), в результате чего обе молекулы объединяются в комплекс К1А—Н. .. BR2 через так называемый водородный мостик —А—Н. .. В—, в записи которого вторая связь изображается пунктиром. Обычно / нв> [c.137]

    И, наконец, еще один класс сред, в которых пространственная дисперсия может играть значительную роль, — это ассоциированные жидкости, к которым, как известно, относится и вода. Хотя молекулы воды быстро и часто меняют своих партнеров по водородным связям , в каждый момент времени любая молекула воды связана с большим числом ближних и не очень ближних молекул [434]. Очевидно, что ориентация электрического диполя молекулы воды будет зависеть не только от значения электрического поля в этой точке, но также и от ориентации связанных с ней молекул воды. Так как ориентация последних, в свою очередь, зависит от напряженности электрического поля в тех точках пространства среды, где они располагаются, то теперь радиус спадения ядра К г, г ) существенно превосходит атомно-молекулярные размеры и определяется характерной длиной цепочки водородных связей в воде ( o 0,5-f-l нм) [433]. [c.154]


    Здесь с и 0) — индивидуальные постоянные, не зависящие ни от температуры, ни от давления. Вторая из них представляет собой некоторый объем, по смыслу уравнения близкий постоянной Ь уравнения Ван-дер-Ваальса (111,28). Таким образом, v — о) характеризует свободный объем жидкости. Вязкость оказывается обратно пропорциональной этой величине. Точнее говоря, при изменении температуры и давления изменяется свободный объем жидкости, а это главным образом и влияет па ее вязкость. Так, с повышением температуры увеличивается объем жидкости, а следовательно, и величина v — ы при этом, в соответствии с ур. (V, 3), уменьшается вязкость. Это происходит потому, что при повышении температуры увеличиваются средние расстояния между молекулами и ослабляется взаимное притяжение между ними. (В ассоциированных жидкостях это сопровождается и уменьшением степени ассоциации.) Уменьшение вязкости при повышении температуры показано в табл. 22. [c.176]

    Мерой энергии межмолекулярного взаимодействия может служить теплота испарения (возгонки) жидкости (кристалла) Л, а точнее разность между теплотой испарения и работой расширения одного моля газа при атмосферном давлении (ЯТ). В табл. 14 приведены значения X—ЯТ при температуре кипения некоторых жидкостей. Теплоты испарения воды и спиртов и других так называемых ассоциированных жидкостей в 5—6 раз выше, чем метана или аргона. Это указывает на то, что в ассоциированных жидкостях между молекулами помимо [c.131]

    В работах [75, 76] оценивалась степень ассоциации молекул простых и сложных жидких систем по их вязкости. Сделано предположение, что наименьшими структурными единицами, участвующими в процессе массопереноса и передачи импульса являются не молекулы, а их комплексы, что проявляется, очевидно, при условии превышения энергии связи между молекулами, входящими в состав комплексов, над энергией теплового движения. В этом случае формулы для расчета вязкости остаются неизменными, а смысл входящего в них молярного объема будет определять объем комплексов. Кроме этого дополнительно принимается еще одно предположение — форма комплексов близка к сфере. Подобные рассуждения были положены нами в дальнейшем для описания нефтяных дисперсных систем при изучении их методом ротационной вискозиметрии. Указанные исследования получили развитие и были взяты за основу при создании метода оценки степени ассоциации молекул в нефтяных системах [77]. Изучались реальные нефтяные системы. Степень ассоциации рассчитывалась на основе значения энергии активации вязкого течения. Показано, что в диапазоне температур 20-50°С усть-балыкская нефть, например, является сильно ассоциированной жидкостью. При повышении температуры степень ассоциации монотонно снижается, а энергия вязкого течения стремится к постоянству. Предполагается, что подобное поведение системы обусловлено не распадом существующих агрегатов, а отделению от агрегатов периферийных молекул, тепловая энергия ко- [c.85]

    Подобно молекулам воды, молекулы низших спиртов связываются между собой водородными связями. Поэтому они представляют собой ассоциированные жидкости и имеют более высокие температуры кипения, чем углеводороды, производными которых они являются, и чем другие органические вещества с таким же составом и молекулярной массой, но не содержащие гидроксильных групп. Фенолы при обычных условиях находятся, как правило, в кристаллическом состоянии. [c.570]

    Это указывает на существование в ассоциированных жидкостях помимо ван-дер-ваальсового, также и другого, специфического взаимодействия между молекулами (см. 50). [c.255]

    Из всех ассоциированных жидкостей наибольший интерес представляет вода как среда, имеющая непосредственное отношение к тем предбиологическим процессам, которые завершились появлением живых систем. Аномалии воды — высокая скрытая теплота ее фазовых переходов (плавления и испарения), большое значение диэлектрической постоянной, теплоемкости, экстремальный ход изменения плотности и теплоемкости с температурой, относительно высокие температуры плавления и кипения, значительное поверхностное натяжение и др. побудили к тщательному изучению этой удивительной жидкости и, хотя специальные методы исследования и в настоящее время открывают ее новые особенности, можно считать доказанным, что ассоциация молекул воды обусловлена главным образом водородными связями. [c.243]

    Приведенные формулы отражают активационный (прыжковый) характер движения молекул. Опыт показывает, что в жидкостях молекулы могут перемещаться непрерывно по траекториям дрейфа, без внезапных скачков. Такой тип движения доминирует в сжиженных инертных газах и в расплавленных металлах. В ассоциированных жидкостях (например, воде) более вероятен прыжковый характер перемещения молекул. [c.9]


    Физические свойства. Спирты — ассоциированные жидкости, т. е. молекулы их связаны между собой водородными связями. Это сказывается на температурах кипения, которые довольно высоки (табл. 16.14). Так, температура кипения пропанола 97,4 °С, а бутана, который имеет почти такую же молекулярную массу, но не имеет водородных связей,—0,5 °С. Метиловый, этиловый, пропиловый спирты смешиваются с водой в любых соотношениях. Дальше в ряду спиртов растворимость сильно уменьшается. [c.280]

    Способность к ассоциации проявляют аммиак, спирты, пероксид водорода, гидразин, серная кислота и многие другие вещества. Ассоциация приводит к повышению температуры плавления, кипения, теплоты парообразования, изменению растворяющей способности и т. п. Часто возможность растворения вещества связывают с его способностью образовывать водородные связи. Так, смешение спирта с водой (двух ассоциированных жидкостей) сопровождается выделением теплоты и уменьшением объема. Это свидетельствует о химизме и уплотнении структуры при связывании водородными связями разнородных молекул спирта и воды. [c.140]

    При выяснении влияния различных факторов учитывались соотношения молекулярных весов, дипольные моменты молекул компонентов раствора и отношение теплопроводности исходных веществ. Были рассмотрены растворы нормальных жидкостей и ассоциированных жидкостей и растворы двух ассоциированных жидкостей. Значения дипольных моментов молекул веществ взяты из приложения к [Л. 9-19]. Значения величин теплоемкости и плотности для составляющих растворов были взяты из справочника [Л. 9-20]. Были использованы экспериментальные данные по теплопроводности растворов Филиппова и Новоселовой и Филиппова (Л. 9-4], Л. 9-5] и наших исследований [Л. 9-8], (9-15] и 9-21]. [c.336]

    Большое влияние на свойства жидкостей оказывает полярность их молекул. В результате взаимодействия диполей друг с другом внутри жидкости могут образовываться молекулярные комплексы различной прочности (ассоциаты). Указанное явление получило название ассоциации молекул. Сильно ассоциированными жидкостями являются вода, спирты, жидкий аммиак, уксусная кислота и др. С повышением температуры усиливается движение молекул и молекулярные комплексы могут распадаться на отдельные молекулы. В некоторых случаях ассоциаты настолько прочны, что сохраняются даже в газообразном состоянии. Ассоциация молекул вызывает у жидкостей повышение теплоемкости, температуры кипения, теплоты парообразования и коэффициента преломления. [c.48]

    Многие жидкости состоят из полярных молекул. В этих молекулах электрические заряды неравномерно распределены между атомами, поэтому в одной части молекулы преобладают отрицательные заряды, а в другой — положительные. Между полярными молекулами может возникнуть притяжение в результате электростатического взаимодействия частей молекул, имеющих различные по знаку заряды. При этом образуются агрегаты, состоящие из двух и большего числа молекул. Образование таких молекулярных агрегатов называется ассоциацией, а жидкости, в которых существуют молекулярные агрегаты, на ч зываются ассоциированными жидкостями. К ним относятся вода, ацетон, спирты. С повышением температуры усиливается тепловое движение молекул и агрегаты могут распадаться. Ассоциированные жид<< кости обладают более высокой диэлектрической проницаемостью, меньшей летучестью и большей теплотой испарения. [c.18]

    Для большинства нормальных жидкостей значения постоянной Трутона В находятся между 20,5 и 21,5, т. е. близки к 21. У ассоциированных жидкостей значения О больше 21, а у воды и спиртов достигают 30. Увеличение значения В может быть объяснено тем, что часть теплоты преобразования расходуется на диссоциацию комплексов молекул. [c.306]

    Это выражение применимо лишь к растворителям, молекулы которых не ассоциируют за счет водородных связей, т. к. поведение ассоциированных жидкостей в растворах значительно отличается от поведения так называемых нормальных)- жидкостей. [c.254]

    Благодаря способности образовывать устойчивые комплексы из двух и более молекул за счет межмолекулярных водородных связей, ассоциированные жидкости в растворах ведут себя аналогично жидкостям с более крупным молекулярным объемом. Отклонение ассоциированного растворителя от поведения аналогичного нормального растворителя будет зависеть от показателя ассоциации, т. е. от среднего числа молекул в ассоциированном комплексе [И]. [c.254]

    Теплоты плавления, испарения и температуры кипения. На разрушение водородных связей при плавлении и испарении требуется энергия порядка 40 кДж/моль, в то время как на разрушение ван-дер-ваальсоБых связей —энергия около 1—5 кДж/моль. Поэтому жидкости, в которых имеются водородные связи между молекулами (ассоциированные жидкости), обладают сравнительно высокими теп-лотами испарения и плавления (см. табл. 14). По той же причине температуры кипения у ассоциированных жидкостей выше, чем у неассоциированных. Сравним, например, два изомера этанол СзН ОН (Т = 351 К), А,Я = 42,63 кДж/моль и диметиловый эфир СНзОСНз (Т, = 249 К), А,Я = 18,6 кДж/моль.  [c.139]

    Сравнение теплот испарения таких жидкостей, как вода, спирты, карбоновые кислоты и т. п., с теплотами испарения углеводородов ряда метана (табл. 28) показывает, что в первых межмолекулярное взаимодействия значительно более сильное. Высокие теплоты испарения ( 40 к Дж/моль) не могут быть объяснены лишь ван-дер-ваальсовым взаимодействием, энергия которого на порядок меньше. При исследовании свойств таких жидкостей обнаруживается объединение их молекул в димеры, тримеры и более сложные ассоциаты. Карбоновые кислоты димеризованы и в парах. В этих так называемых ассоциированных жидкостях помимо универсального ван-дер-ваальсового взаимодействия между молекулами существует еще специфическое взаимодействие, называемое водородной связью (Н-связью). Особенность такого взаимодействия состоит в том, что атом водорода, входящий в состав одной молекулы (R,A—Н), образует вторую, обычно более слабую связь с атомом В другой молекулы (BR,) в результате чего обе молекулы объединяются в комплекс RjA—H...BR2 через так называемый водородный мостик —А—И...В—, в котором вторая связь изображается пунктиром (рис. 111). Обычно длина водородной связи jRhb> г. Примером комплекса с Н-связью может служить димер муравьиной кислоты [c.267]

    Наиболее ярко водородная связь проявляется в ассоциированных жидкостях. Через водородные связи может создаваться кристаллическая структура растущего кристалла при уменьшении интенсивности теплового движения в кристаллизующейся системе. Необходимо отметить наличие, наряду с межмолекулярной, также и внут-римолеку/ ярной водородной связи, характерной для некоторых молекул, обладающих одновременно акцепторными и донорными группами. [c.97]

    Температура кипения спиртов выше, чем галогеналкилов и углеводородов с тем же числом углеродных атомов. Это свойство, характерное для всех гидроксилсодержащих веществ, объясняется тем, что молекулы спирта, как и воды, являются ассоциированными жидкостями (их молекулы соединены друг с другом) за счет возникновения между молекулами водородных связей  [c.106]

    Установлено, что для большого числа жидкостей, молекулы которых не образуют ассоциатов ни в жидкой, ни в паровой фазе, справедливо эмпирическое правило Трутона энтропия испарения жидкости при нормальной температуре кипения составляет 21—22 э. е. Для веществ, ассоциированных в жидкой фазе, Д 5 > Д5трутона (например, для воды Дг,5=26 э. е.). Ес ЛИ же вещество образует ассоциаты в паре, то для него Дг)5< <А5трутона- Примером может служить уксусная кислота (До5 15 э. е.). Тем не менее правило Трутона может быть полезным для оценки теплоты испарения по известной температуре кипения. [c.69]

    Особенности энутреннего строения воды в жидком состоянии. Еще в конце прошлого века было обнаружено что у некоторых жидТ< остей наблюдаются отклонения от обычного для большинства жидкостей соотношения свойств например, показывают более высокую теплоту испарения одного моля, чем свойственно нормальным жидкостям. Отклонения эти по своему характеру приводили к заключению, что в таких жидкостях молекулы объединены (ассоциированы) в более крупные частицы, состоящие из двух, трех и может быть большего числа простых молекул. Такие жидкости получили название ассоциированных. К ним принадлежит и вода. [c.11]

    Формула (IV. 127а) достаточно хорошо описывает свойства слабо полярных жидкостей с диэлектрической проницаемостью Б несколько единиц. Однако для сильно полярных и ассоциированных жидкостей (например, воды) она дает заниженные значения диэлектрической проницаемости. Допущения, заложенные в модели Онзагера, в этом случае оказываются слишком грубыми. Более строго диэлектрические свойства полярных жидкостей рассмотрены Кирквудом и другими авторами на основе молекулярно-статистического подхода с учетом корреляций в ориентациях молекул. [c.215]


Смотреть страницы где упоминается термин Ассоциированные жидкости молекулы: [c.343]    [c.126]    [c.87]    [c.236]    [c.273]    [c.66]    [c.145]    [c.192]    [c.413]    [c.343]    [c.343]    [c.24]    [c.224]    [c.24]   
Явления переноса в водных растворах (1976) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкость ассоциированные



© 2025 chem21.info Реклама на сайте