Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость и полярные свойства

    Значение воды для процессов жизнедеятельности (питьевое водоснабжение, сельское и рыбное хозяйства) и для промышленных целей, помимо широкой ее распространенности в природе, обусловлено уникальными свойствами воды высокими теплоемкостью, теплопроводностью и растворяющей способностью. В свою очередь все они определяются значительной полярностью молекул воды и, следовательно, как значительной энергией взаимного притяжения (ориентационное взаимодействие), так и высокой диэлектрической проницаемостью. Калористические свойства (теплоемкость, теплопроводность) воды во многом обусловливают энергетические процессы в гидросфере и атмосфере, а в промышленности являются причиной широкого использования воды как теплоносителя (охлаждение греющих поверхностей) и рабочего тела в тепловой и атомной энергетике. Способность воды растворять многие вещества, главным образом электролиты, обеспечивает жизнедеятельность растений и животных (тургор, осмотические процессы, большинство биохимических реакций), а также обусловливает промышленное применение ее как средства очистки и среды для проведения химико-технологических процессов. [c.6]


    Удельные сопротивления полимеров и их электрическая прочность (сопротивление пробою) еще недостаточно изучены связь их с другими физическими и химическими свойствами полимеров, а также с особенностями их внутреннего строения еще недостаточно выяснена. Наоборот, по диэлектрической проницаемости и диэлектрическим потерям полимеров имеется теоретический и экспериментальный материал, который дает возможность уже в настоящее время изучать связь этих свойств с другими свойствами полимеров. Измерение диэлектрической проницаемости является основным методом определения дипольного момента молекул и изучения их полярной структуры (см. 23). В связи с этим из пяти названных выше технических характеристик диэлектрических свойств остановимся на первых двух. [c.594]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Уникальные каталитические свойства ферментов (см. гл. I) обусловлены весьма сложным механизмом их действия, многие стороны которого еще до конца не раскрыты. Всеобщее признание, однако, получило представление, согласно которому ферментативный катализ обусловлен по крайней мере тремя основными причинами во-первых, тем, что сорбция субстрата на ферменте протекает так, чтобы облегчить последующую химическую реакцию во-вторых, полифункциональ-ным характером химического взаимодействия между ферментом и сорбированным субстратом (или субстратами) и, наконец, в-третьих, эффектами микросреды, характеристики которой (диэлектрическая проницаемость, полярность и др.) в области активного центра могут существенно отличаться от соответствующих показателей водного раствора. В настоящей главе будут рассмотрены именно эти три физикохимических механизма ускорений в реакциях, катализируемых ферментами. Наиболее подробно остановимся на первом из них ( 1—4), поскольку именно здесь удалось глубоко и количественно проникнуть в природу движущих сил катализа. [c.34]


    Опыт показывает, кроме того, что характер превращения различных веществ зависит от нх агрегатного состояния или, в более общем случае, от природы реакционной среды. Растворители могут оказывать влияние на ход реакции как за счет своих физических (например, диэлектрической проницаемости, полярности, вязкости и т.д.), так и химических свойств (кислотно-основного характера, сольватирующей способности и т.д.) иными словами, скорость реакции является функцией физической и химической природы реакционной среды. [c.20]

    Последовательная теория, связывающая статическую диэлектрическую проницаемость полярных жидкостей со свойствами молекул, была развита Онзагером [18], Кирквудом [19] и Фрелихом [20] (см. также [7]). Согласно теории Онзагера — Кирквуда — Фрелиха, [c.34]

    Поскольку отклонение й от связано с двумя основными взаимодействиями разбавитель— ТБФ и разбавитель— сольват соли металла, то попытки объяснить действие разбавителей каким-либо одним их физическим свойством (диэлектрической проницаемостью, полярностью и т. п.) мало перспективны. [c.48]

    С плотностью и диэлектрической проницаемостью связаны свойства Н2О как растворителя. При низких температурах, когда плотность и диэлектрическая проницаемость жидкой фазы Н2О велики (при 18 °С р=1000 кг/см , 5=81), вода является высокополярным растворителем, вызывающим сильную диссоциацию растворенных в ней электролитов. С ростом температуры плотность и диэлектрическая проницаемость воды уменьшаются, в связи с чем вода становится все менее полярным растворителем. Плотность и диэлектрическая проницаемость насыщенного пара с ростом температуры (см. рис. В.6) возрастают, соответственно усиливаются свойства пара как растворителя. Вместе с тем из-за низких абсолютных значений диэлектрической проницаемости насыщенный пар во всем диапазоне давлений остается малополярным растворителем. [c.18]

    В 4-м томе серии Современные проблемы физической химии опубликована обзорная статья, освещающая основные этапы развития исследований электрохимической кинетики, состояние работ в этой области науки в СССР и за рубежом. В сборник включены обзорные работы по более узким актуальным проблемам, изучаемым иа химическом факультете МГУ химические реакции при низких температурах, химические методы разделения стабильных изотопов, изучение и при.меиение графитированных саж для газохроматографического разделения молекул, изучение каталитических свойств цеолитов, исследование фазовых превращений при высоких давлениях, вопросы методики расчетов силовых постоянных многоатомных молекул, механизм радиолиза иона перхлората, фотохимические реакции электрофильного и нуклеофильного замещения в ароматических соединениях, состояние и свойства молекул целлюлозы и ее производных в предельно разбавленных растворах, методика измерения диэлектрической проницаемости полярных жидкостей в области сверхвысоких частот электромагнитного поля, методика исследований энергетических характеристик химических реакторов тлеющего разряда. [c.2]

    Причины электролитической диссоциации. Опыты показывают, что соли, кислоты и основания подвергаются диссоциации лишь в том случае, если молекулы растворителя обладают значительной диэлектрической проницаемостью. Это свойство молекул является следствием большой их полярности. [c.171]

    Увеличение полярности агрегатов молекул проявляется также в (Повышении диэлектрической проницаемости жидкостей. Так, для воды при 25 °С 6 =78,5, а для серной кислоты 6 =100 (другие примеры см. в табл. В.17). Свойства жидкостей как растворителей и сольватирующих агентов также в значительной мере определяются способностью их молекул выступать донором или акцептором при образовании водородных связей (разд. 34.2.1). [c.354]

    Как правило, жидкости с сильно полярными молекулами обладают высокой диэлектрической проницаемостью. С этим их свойством тесно связаны такие явления, как ассоциация молекул ра- [c.83]

    К апротонным относятся также растворители, которые называют полярными или диполярными апротонны-м и растворителями. У этой группы растворителей более высокая диэлектрическая проницаемость (е>15) и электрический дипольный момент (7-10" Кл-м и более). К ним относятся ацетон, нитрометан, диметилформамид, пропиленкарбонат, ацетонитрил, диметилсульфоксид и др. Кислотно-основные свойства этих растворителей выражены слабо, но все они сильно поляризованы. Помимо применения в аналитической химии диполярные апротонные растворители используют для проведения различных исследований в области кинетики, катализа, электрохимии и т. д., позволяя создавать наиболее благоприятные условия протекания реакций. [c.35]


    Рассматривая влияние химической природы адсорбтива на его способность адсорбироваться на твердом теле, трудно сделать какие-нибудь обобщения, так как адсорбируемость одного и того же адсорбтива сильно зависит от полярности адсорбента и среды. Все же, определяя влияние на адсорбцию свойств самого адсорбтива, можно исходить из правила уравнивания полярности, сформулированного П. А. Ребиндером. Согласно этому правилу вещество С может адсорбироваться на поверхности раздела фаз Л и Б в том случае, если наличие вещества С в поверхностном слое приводит к уравниванию разности полярностей этих фаз. Иначе говоря, адсорбция будет идти, если значение полярности вещества С, характеризуемой, например диэлектрической проницаемостью е, лежит между значениями полярностей веществ Л и В, т. е. если будет соблюдаться условие  [c.140]

    Так как полярные соединения с малым размером молекул имеют очень большую диэлектрическую проницаемость, их присутствие в высокомолекулярных веществах может сильно ухудшить диэлектрические свойства последних. Поэтому желательно, чтобы не было следов растворителей (ацетона, спирта, сложных эфиров и др.) в лаковых пленках, нежелательны мономеры и низкомолекулярные фракции в полимерных веществах (в поли-метилметакрилате, полиамиде и др.). Получая синтетические электроизоляционные масла (стр. 111), необходимо удалять низкомолекулярные полимеры (димеры, тримеры) изобутилена и н-бутиленов. В этих соединениях отрицательно на диэлектрические свойства влияет полярность двойной связи, что видно на диизобутилене [c.64]

    Связи атома фтора с углеродом сильно полярные. Так как их дипольные моменты друг друга полностью компенсируют, суммарный дипольный момент макромолекулы политетрафторэтилена равен нулю. Это обусловливает очень хорошие диэлектрические свойства политетрафторэтилена и весьма малую зависимость их от частоты и температуры. Удельное объемное электрическое сопротивление политетрафторэтилена выше 10 ом см ло 10 ° ом-см). Диэлектрическая проницаемость при 60 гц и 10 ° гц 2,0—2,1. Тангенс угла диэлектрических потерь при 60 гц 0,0002—0,00025, при 10 ° гц 0,0002. Исключительной особенностью политетрафторэтилена является его способность длительно работать в чрезвычайно широком диапазоне температур — от —269 до +250° С. [c.144]

    Полярные гидроксильные группы, вращаясь вокруг ординарной связи, могут ориентироваться в электрическом поле. В связи с этим проявляется эффект поляризации, и целлюлоза имеет высокую диэлектрическую проницаемость (е = 6,5—7) и большой тангенс угла диэлектрических потерь (0,005—0,010). Связывание гидроксильных групп в сложные и простые эфиры понижает гигроскопичность материалов и улучшает электроизоляционные свойства. [c.281]

    Как правило, ионные и полярные вещества растворяются в полярных растворителях, а неполярные вещества — в неполярных растворителях. Ионные соединения обычно легче растворяются в растворителях с высокой диэлектрической проницаемостью, так как при этом требуется меньше энергии для отделения иона от кристалла. Необходимо, однако, сказать, Что до сих пор не создано общей теории, устанавливающей количественные соотношения между свойствами чистых компонентов и свойствами и составом раствора. На пути создания такой теории возникает много трудностей. Прежде всего не удается полностью расшифровать того, что именно происходит в системе и какие формы частиц и структур в ней образуются. Это может быть достигнуто только с помощью использования самых разнообразных химических, физических и физико-химических методов. Достаточно строгие законы пока удается сформулировать только для разбавленных жидких растворов. [c.150]

    Для предварительной оценки величин удерживания было предпринято немало попыток связать их с термодинамическими, электрическими и геометрическими свойствами неподвижных фаз анализируемых веществ. Многие группы веществ обнаруживают известную зависимость относительных величин удерживания от электрических характеристик неподвижных фаз или разделяемых компонентов (дипольный момент, диэлектрическая проницаемость, поляризуемость), хотя, например, дипольный момент представляет собой некоторую суммарную величину и нельзя ожидать простой связи между ним и величинами удерживания. Такая связь наблюдается лишь в тех случаях, когда структура растворителя и растворенного вещества сравнительно проста п доля полярных групп не слишком велика. Особенно трудно устано- [c.183]

    Энергия поляризационного взаимодействия между молекулами примерно на порядок меньше энергии лондоновского и дипольного взаимодействия. Например, для двух молекул пиридина при Я = 2 нм, о 1,6- 10 кк Т при 300 К- Тем не менее, поляризационное взаимодействие между молекулами оказывает существенное влияние на свойства полярных жидкостей. Полярная молекула поляризует всю окружающую ее массу молекул и создает (индуцирует) в этом окружении некоторый дипольный момент А[х, величина которого зависит от поляризуемости и диэлектрической проницаемости среды. Поляризация окружающей среды создает поле ( реактивное поле) в том элементе объема, где находится полярная молекула. В результате происходит дополнительная поляризация полярной молекулы. Реакция окружающей среды на присутствие в ней полярной молекулы приводит к появлению реактивного поля, действующего на молекулу. В итоге возникает существенный дополнительный вклад в энергию взаимодействия полярных молекул со средой. Нетрудно понять, что этот вклад пропорционален числу молекул в единице объема. Он значителен в жидкой фазе и мал в разреженных парах. Влияние этого фактора будет рассмотрено в гл. П. [c.29]

    Вспомним, что интересующее нас поле Я не есть локальное свойство данной конкретной молекулы. / — это средняя характеристика полей, создаваемых полярными молекулами в изотропном диэлектрике, отнесенная к одной полярной молекуле, на которую в среднем приходится объем V = У/Ма =(4/3) ла . Такую сферу и следует считать очень малым объемом, сохраняющим свойства макроскопического объекта. Ее можно представлять себе как область вакуума, в центре которой находится точечный диполь л. Она может рассматриваться и как непрерывная среда с диэлектрической проницаемостью имеющая момент, равный и результат будет тем же. [c.46]

    Влагопоглощение, снижающее все электрические свойства, зависит, главным образом, от состава полимера. Полимеры, не содержащие полярных групп, обладают малым влагопоглощением, малой диэлектрической проницаемостью, не поляризуются и, таким образом, поглощают мало энергии и их свойства более стабильны, так как они не нагреваются в процессе работы. Поглощение энергии диэлектрическими материалами характеризуется тангенсом угла потерь (tgS) [c.519]

    В целом нефть относят к неполярным веществам, поскольку ее диэлектрическая проницаемость находится в пределах 2,0—2,5. Однако наличие в нефти полярных и неполярных компонентов придает ей свойства, близкие к слабополярным диэлектрикам. [c.34]

    Из электрофизических свойств СОЖ целесообразно определять диэлектрическую проницаемость, полярность, поляризуемость, электросопротивление и способность изменять потенциал погруженного в СОЖ металла или рабо(гу выхода электрона (см. гл. 3). Диэлектрическую проницаемость продуктов или их растворов в стандартном растворе (бензоле) измеряют В зазоре ячейки между соосными металлическими цилиндрами при помощи емкостемеров [128, 129]. Об относительной полярности (ОП) исследуемых веществ судят по формуле [128]  [c.112]

    Чем выше полярность (диэлектрическая проницаемость) среды и чем больше она содержит активированных комплексов и долгоживущих свободных стабильных радикалов, а также чем выше поляризуемость ПАВ, тем легче ПАВ растворяются, образуя в растворе ионизованные и активированные комплексы. Образование последних сказывается на мицелло- и структуро-образовании и в конечном счете на функциональных свойствах топлив и масел. [c.207]

    Большинство полимеров относится к диэлектрикам. Однако их диэлектрические свойства лежат в широких пределах и зависят от состава и структуры макромолекул. Диэлектрические свойства в значительной степени определяются наличием, характером и концентрацией полярных групп в макромолекулах. Наличие у макромолекул галогенных, гидроксидных, карбоксидных и других полярных групп ухудшает диэлектрические свойства полимеров. Например, диэлектрическая проницаемость поливинилхлорида в [c.362]

    Связь полярных свойств различных соединений с их защитной способностью исследуется рядом методов. В табл. 6.3 представлены результаты определения диэлектрической проницаемости (е), относительной полярности присадок (ОПП), изменения контактной разности потенциалов (А КРП) и защитных свойств. Из этих данных видно, что очищенные минеральные масла практически не обладают какой-либо полярностью, а изменение А КРП объясняется в этом случае электроноакцепторными свойствами кислорода, свободно проникающего через тонкие масляные пленки [308, 309]. Нитрованные нефтепродукты и среднемолекулярные сульфонаты, т. е. соединения, содержащие группы с отрицательным суммарным электронным эффектом, обладают высокой полярностью они значительно увеличивают диэлектрическую проницаемость бензола. В их присутствии резко повышается ДКРП (уменьшается работа выхода электрона). [c.298]

    Оказалось, что все жидкости обладают модулем сдвиговой упругости и модуль сдвига таких полярных жидкостей, как вода и спирты, при приближении к поверхности пьезо-кварца на расстояние, меньшее 0,1 мкм, повышается во много раз. По мнению авторов, это также является следствием структурных изменений в пристенных слоях полярных жидкостей. Повышение значения сдвиговой прочности граничных слоев обнаружено также при исследовании электроосмоса в капиллярах при высоких градиентах потенциала [228]. Установлено, что вблизи гидрофильных поверхностей в воде на расстоянии нескольких мономолеку-лярных слоев имеется атюмалия диэлектрических свойств. Например, значительное понижение диэлектрической проницаемости у воды (прн толщине слоя 0,07 мкм — до 4,5), что свидетельствует о снижении свободы вращения молекул воды в тонких прослойках. Теплопроводность жидкости с уменьшением толщины граничной пленки при этом резко возрастает, в то время как ее электрическая проводимость снижается. [c.201]

    Различие в химических свойствах фракций смолистых веществ проявляется и в характере температурной зависимости диэлектрической проницаемости растворов последних. Наблюдается следующая закономерность чем более полярным растворителем извлечена из силикагеля данная фракция смолы, тем при меньших концентрациях раствора на кривых e=f(t) появляется максимум, а в близких концентрациях максимум тем значительнее и тем больше смещен в область высоких температур. Так, например, для раствора фракции смолы ромашкинской нефти, извлеченной ацетоном, наблюдается максимум на кривой е=/( ) уже при концентрации смолы в растворе, равной 14%, причем восходящая ветвь кривой (Ае/Л >0) доходит до +7°, в то время как для фракции смолы этой же нефти, но извлеченной четыреххлористым углеродом, максимум на соответствующей кривой появляется при концентрации смолы, равной 33%, а восходящая ветвь кривой кончается уже при —5°. Сопоставление этих данных с результатами изучения химического состава и свойств соответствующих фракций ясно показывает, что увеличение склонности к ассоциации смолистых веществ в растворе связано с увеличением количества полярных групп и с повышением суммарного содержания в смоле гетероатомов (З+К+О). Чем выше содержание гетеропроизводных органических соединений, тем сильнее и в более широком интервале происходит повышение диэлектрической проницаемости с ростом температуры, обусловленное диссоциацией молекулярных ассоциатов. Эти выводы носят пока качественный характер, поскольку количественные соотношения могут быть установлены только при учете фактора вязкости. [c.187]

    К г i е g е г F. J., VV е п z к о Н. Н. Диэлектрические свойства ацетиленовых соединений. Ч. X. Оборудование для измерения диэлектрической проницаемости газов. Полярность газообразных мопоалкилацетиленов. J. Ат. hem. So ., 1938, 60, Л 9, 2115—2119. [c.442]

    Подобного рода эффекты возможны также и в ферментативных реакциях, поскольку микросреда активного центра многих ферментов обнаруживает по своей полярности или диэлектрической проницаемости свойства скорее органических растворителей, чем воды (см. гл. I). По аналогии с э ектами, наблюдаемыми в нефермента-тиБных реакциях, десольватация реагирующих групп в активных центрах ферментов может дать ускорение более чем в 10 раз [291 (если сравнивать ферментативный процесс с гомогенно-каталитической реакцией, идущей в воде). В литературе пока не описаны системы, для которых было бы строго доказано участие сольватационных эффектов или электростатической стабилизации, в ферментативном катализе. [c.67]

    Поливинилхлорид (—СНг—СНС1—) — жесткий, негибкий продукт полимеризации винилхлорида. Жесткость его обусловлена сильным межмолекулярным взаимодействием (водородным и ориентационным), возникающим из-за наличия в цепных макромолекулах атомов электроотрицательного хлора. Полярный диэлектрик, эксплуатируемый в области низких частот, характеризуется высокими диэлектрическими потерями (1 6 = 0,15— 0,05) и меньшим по сравнению с полиэтиленом удельньгм объемным сопротивлением (10 Ом-м). Диэлектрическая проницаемость 3,2—3,6. Используют его в производстве монтажных и телефонных проводов. Для придания полимеру эластичности его пластифицируют, т. е. вводят специальные добавки, чаще всего сложные эфиры и полиэфиры с низкой степенью полимеризации. Однако при этом ухудшаются электроизоляционные свойства материала. [c.478]

    В растворителях с высокой диэлектрической проницаемостью участие растворителя в образовании ионов увеличивается за счет влияния диэлектрических свойств. В зависимости от значения диэлектрической проницаемости ионы, образовавшиеся в результате разрушения ионной решетки или гетеролиза полярной связи, либо ассоциированы, либо находятся в растворе в виде отдельных ионов, окруженных сольватной оболочкой. При использовании растворителей с низкой диэлектрической проницаемостью возникают преимущественно ионные ассоциаты и ионные пары, в которых два или более иона связываются электростатическими силами. Ассоциированные ионы образуют самостоятельные частицы и вследствие взаимного насыщения электрических зарядов не дают вклада в электрическую проводимость раствора. При переходе к среде с более высокой диэлектрической проницаемостью электростатическое притяжение между катионами и анионами в соответствии с законом Кулона (разд. 32.3.1) ослабляется и образуются отдельные, большей частью сольватированные ионы. При растворении полярных соединений в растворителе с высокой диэлектрической проницаемостью это состояние достигается без каких-либо промежуточных состояний. Процесс перехода ионных ассоциатов в свободные ионы называют диссоциацией. Весь процесс можно записать с помощью следующей схемы последовательных реакций [c.451]

    Существует точка зрения, что электропроводность растворов электролитов в полярных растворителях определяется электромагнитными свойствами растворителя, в частности отношением его диэлектрической проницаемости к времени дипольной релаксации (последняя величина характеризует подвижность дииоль-ных молекул в растворе). Это отношение является фундаментальной характеристикой растворителя и называется предельной высокочастотной электропроводностью. Установлено, что в водно-органических растворах величина х. уменьшается при увеличении концентрации неэлектролита подобно тому, как уменьшается при увеличении концентрации неэлектролита удельная электропроводность раствора электролита. [c.84]

    Влияние размера молекулы на диэлектрические свойства отчетливо видно на примере органических кислот, содержаш,их весьма полярную группу СООН. Низшие их представители сильно диссоциируют в воде, тогда как кислоты, содержащие большое число атомов углерода, в воде не диссоциируют и применяются как диэлектрики. Пример такого диэлектрика — канифоль, пред-ставляю1 ая собой главным образом свободную абиетиновую кислоту (С19Н29СООН). Диэлектрическая проницаемость канифоли 3,9, тогда как у муравьиной кислоты НСООН она равна 62. [c.64]

    Удельное объемное сопротивление резольных смол в стадии С при нормальной температуре колеблется в пределах 10 —10 ом-см, тангенс угла диэлектрических потерь при 50 гц 0,05—0,10, диэлектрическая проницаемость 5—6, электрическая прочность 10—14 кв мм. Диэлектрические свойства изменяются в зависимости от частоты, что характерно для полярных диэлектриков, и ухуд- [c.205]

    Формула (IV. 127а) достаточно хорошо описывает свойства слабо полярных жидкостей с диэлектрической проницаемостью Б несколько единиц. Однако для сильно полярных и ассоциированных жидкостей (например, воды) она дает заниженные значения диэлектрической проницаемости. Допущения, заложенные в модели Онзагера, в этом случае оказываются слишком грубыми. Более строго диэлектрические свойства полярных жидкостей рассмотрены Кирквудом и другими авторами на основе молекулярно-статистического подхода с учетом корреляций в ориентациях молекул. [c.215]

    На свойствах растворов наиболее отражается такая характеристика растворителей, как их диэлектрическая проницаемость е (см. гл. IV, 6). Высокой диэлектрической проницаемостью обладают полярные вещества, например вода, жидкий аммиак, диметилформамид ( H3)2N H0 и др. В среде этих растворителей электростатическое притяжение противоположно заряженных частиц ослабевает. Поэтому в таких растворителях вещества, состоящие из ионов или полярных молекул, распадаются на ионы (см. гл. VIII, 1). [c.145]

    На свойствах растворов наиболее отражается такая характеристика растворителей, как их диэлектрическая проницаемость е (см. гл. 4 4.6). Высокой диэлектрической проницаемостью обладают полярные вещества, например вода, жидкий аммиак, диметилформамид (СНз)2КСНО и др. В среде этих [c.192]

    Классификация растворителей вытекает из свойств водородных соединений метан — инертный растворитель (и все углеводороды), аммиак — основной, вода — амфотерный, фтороводород — кислый. Важнейшая характеристика растворителей — их диэлектрическая проницаемость. По ее величине все растворители располагаются в элю-отропный ряд Цвета — Траппе. Этот ряд связан с полярностью и сор-бируемостью веществ ( 24, 45, 173). Меняя химический состав растворителя, можно изменять силу растворенных в нем кислот и оснований и преврашать соли в кислоты или основания. Например, мочевина Нз —СО—1 Н2 проявляет в жидком аммиаке кислотные свойства, в безводной уксусной кислоте — сильные основные, в водном растворе — слабые основные. [c.50]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость и полярные свойства: [c.207]    [c.324]    [c.314]    [c.392]    [c.393]    [c.340]    [c.289]   
Смотреть главы в:

Двойные жидкие системы -> Диэлектрическая проницаемость и полярные свойства




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Диэлектрические свойства

Полярность и диэлектрическая проницаемост



© 2025 chem21.info Реклама на сайте