Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность тока защитная

    Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок ВЕ на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко обр E>EF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных. [c.197]


    Катодная плотность тока, при которой наблюдается отрицательный защитный эффект, зависит от различных условий (рис. 222). При достаточно большой катодной поляризации (когда металл становится активным) отрицательный защитный эффект переходит в обычный положительный защитный эффект. [c.320]

    Защитная плотность тока для стали в различных средах [c.306]

    Потенциал металла покрытия измеряют на цельном электроде, считая, что диффузионные и кинетические ограничения, а также площадь электрода из-за пор практически не меняются. Затем строят поляризационную кривую для иокрытия, на нее наносят потенциал системы основа — металлическое покрытие и по нему определяют плотность тока коррозионного элемента. На рис. П.10 приведены коррозионные диаграммы двухэлектродных систем. Из приведенных графиков следует, что в электрохимическом отношении при одинаковых толщинах покрытий наиболее активна система железо-медь, а наименее активна железо—хром, чем объясняются высокие во многих случаях защитные свойства хромовых покрытий. Таким образом, возможность определения коррозионного тока, возникающего между основой и покрытием, позволяет оценить защитную способность покрытия и является объективным показателем пористости покрытия. [c.75]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]


    Если защитный ток вызывает осаждение слоя неорганических соединений на катодной поверхности, как это имеет место в жесткой или морской воде, то необходимый суммарный ток падает по мере роста слоя. Однако на обнаженной металлической поверхности плотность тока остается такой же, как и до образования осадка при этом наблюдается кажущееся уменьшение плотности тока, если его рассчитывать, исходя из общей поверхности. [c.222]

    Важнейшим условием точного определения плотности тока, необходимой для полной защиты, является измерение потенциала защищаемого объекта (см. разд. 12.16). Не делая таких измерений, можно определить только ориентировочные значения. Ниже приводятся приблизительные значения защитной плотности тока для стали, помещенной в различные среды  [c.222]

    Для анодной защиты, в отличие от катодной, характерно, чto скорость коррозии, хоть и мала, однако не падает до нуля. С другой стороны, в агрессивных кислотах необходима значительно более низкая плотность тока, чем при катодной защите, когда она не может быть ниже эквивалентной скорости саморастворения в той же среде. Для нержавеющих сталей защитная плотность тока отвечает довольно высокой скорости коррозии сплавов в активном состоянии. [c.230]

    Защитная плотность тока в зависимости от характеристики грунтов площадки [c.146]

    При противокоррозионной защите днищ вертикальных стальных резервуаров одиночными протекторными установками, установленными в грунт (рис. 46), основной задачей является определение числа протекторов и срока их службы. В основу расчета положено достижение плотностью тока в цепи протектор—резервуар защитной величины, которая выбирается в зависимости от переходного сопротивления изоляции днища и удельного электрического сопротивления грунтов (табл. 24). [c.160]

    Защитная плотность тока для изолированного стального сооружения [c.160]

    При использовании табл. 24 нужно руководствоваться тем, что большему значению переходного сопротивления У о соответствует меньшее значение защитной плотности тока. [c.160]

    В слзгчае наличия глубоких каверн в стенке трубы необходимое смещение потенциалов при катодной защите будет достигаться при большой защитной плотности тока в связи со щелевым эффектом. С увеличением времени эксплуатации трубопроводов без катодной защиты для получения надежной защиты катодная поляризация должна быть больше. Это приводит к увеличению расхода защитного тока. Аналогичное явление может наблюдаться и при длительных перерывах в работе катодных установок. [c.21]

    Основными параметрами, количественно характеризующими защитные свойства покрытий, приняты следующие электрические величины плотность защитного тока, разность потенциалов труба — земля и переходное сопротивление. Некоторые другие показатели < остояния изоляционного покрытия, такие, как, например, сквозная пористость защитного слоя, могут быть получены из указанных параметров. Для определения этих параметров разработаны соответствующие методы. Каждый метод имеет свои положительные и отрицательные стороны. Так, при оценке по плотности тока определяется не истинная плотность тока по длине образца или участка, а усредненная. В методике оценки по обнажению поверхности металла много не всегда правомерных допущений. При оценке разности потенциалов в случае небольших сквозных повреждений, когда они распределены равномерно вдоль трубопровода, не улавливается резкое изменение хода кривой разности потенциалов. [c.63]

    Защитную плотность тока (т. е. силу тока, необходимую для защиты 1 км трубопровода) можно рассчитать по формуле [c.168]

    Степень защищенности сооружения, % Необходимое для защиты смещение потенциала AU, В Отношение необходимой защитной плотности тока к допустимой скорости коррозии 3 К [c.194]

    Защитную плотность тока / и смещение потенциала А11 определяют из табл. 7.2. Поскольку в этой таблице даны значения отношения защитной плотности тока к допустимой скорости коррозии к = 9,6бо/7 , для определения полученное из таблицы значение следует умножить на к . [c.194]

    Сила тока /, требуемая для защиты всего днища резервуара, определяется в зависимости от защитной плотности тока. [c.235]

    Общая оценка состояния изоляции Переходное сопротивление изоляции, Ом.м Защитная плотность тока (в мА/м ) в зависимости о г удельного сопротивления грунта, Ом-м  [c.238]

    Для осуществления электрохимической защиты арматуры железобетонных резервуаров необходимо знать минимальную защитную плотность тока, которая может быть определена опытным путем (снятие поляризационных кривых) непосредственно на защищаемом резервуаре. На рис. 9.12 представлены поляризационные кривые стальной арматуры для различных бетонов. [c.243]

    Рассмотрим изменение параметров катодной защиты в зависимости от качества изоляционных покрытий (переходного сопротивления труба — земля Н ). Как видно из рисунка 11.9, сила защитного тока I уменьшается с увеличением переходного сопротивления. Причем резкое уменьшение / наблюдается в пределах изменения от 10 до 10 Ом-м . Скорость изменения / в интервале значений 10 —10 Ом-м снижается. В дальнейшем при увеличении В скорость изменения / падает, а сила тока практически не меняется (Н = 10 10 Ом-м ). С увеличением плотность защитного тока резко уменьшается. При достижении величины = 10 Ом-м защитная плотность тока практически не изменяется. [c.276]


Рис. 11.9. Кривые зависимости силы тока и защитной плотности тока от переходного сопротивления труба — земля (для трубопроводов диаметром 1020 мм при длине защитной зоны I = 13 км) Рис. 11.9. Кривые <a href="/info/869285">зависимости силы тока</a> и защитной плотности тока от <a href="/info/1678863">переходного сопротивления труба</a> — земля (для <a href="/info/94928">трубопроводов диаметром</a> 1020 мм при длине защитной зоны I = 13 км)
    Защитная плотность тока в зависимости от характеристики грунтов площадки приведена ниже. [c.151]

    По табл. 7.2 принимаем защитную плотность тока, соответствующую р = 20 Ом-м hRq = 28,26 Ом-м , = 0,003 А/м . [c.224]

    Такие электроды с 1976 г. начали поставлять ДЭЗ и ЧЭЗ. В том же году НЭЗ выпустил первую партию электродов с защитным покрытием после ввода участка для их производства. В 1977 г. их было поставлено 1500 т, в 1978 г. — 3500 т. Как уже сообщалось, сразу же начались неудачи из-за попыток использовать такие электроды на повышенные плотности тока. Но неудовлетворительная работа ниппельного соединения заставила отказаться от этого аспекта их использования, ограничиваясь экономией в их расходе у потребителя. Покрытые электроды не получили широкого применения, поэтому новые участки по их производству на других заводах не создавались. [c.246]

    Оловянирование образцов проводят в электролите № 2 при оптимальных условиях электролиза (200—300 А/м ) на толщину слоя 2 и 10 мкм. Пористость определяют по методике, изложенной в приложении У.4 защитную способность — в приложении V. 5. Опыт повторяют, получив блестящее покрытие оловом нз электролита № 4 или № 5 при плотности тока 600 А/м (приняв ВТ равным 65 %). [c.30]

    Прежде чем спроектировать установку катодной защиты декантера, необходимо было определить величину защитной плотности тока и потенциала, при которых коррозия практически равна нулю. Защитная плотность тока углеродистой сталя в растворе каустика, содержащем при 90 с 640 г/л a4iOH, определяли обычным методом - по кривой зависимости скорости коррозия стали ох плотности тока, защитный потенциал находили по катодной подяриаациовной кривой. На рис. I показана зависимость скорости коррозия углеродистой стали Ст.З от плотности тока в растворе, содержащем [c.27]

    Уко11 = /а = 0), коэффициент торможения — бесконечности, а степень защиты—100%. Плотность тока, обеспечивающая полную катодную защиту, называется защитным током /з. На рис. 24.8 ему соответствует отрезок сс1. Величина защитного тока не зависит от особенностей протекания данной анодной реакции, в частности от величины сопровождающей ее поляризации, а целиком определяется катодной поляризационной кривой. Так, напрнмер, прн переходе от водородной деполяризации к кислородной сила защитного тока уменьшается и становится равной предельному диффузионному току (отрезок ей на рис. 24.8). [c.503]

    На рнс. 204 приведена схема установки катодной защиты стального бака, а на рис. 205 — схема установки катодной защиты нлави,1ьиого котла в производстве едкого иатра. Величина оптимальной защитной плотности тока зависит в основном от [c.305]

    Практически полная защита в 97—98% случаев достигается при значениях плотности тока около 1,5 й/лг . Из опыта известно, что превыщение оптимальной защитной илотности тока может привести к некоторому снижщщю защиты. Такое явление известно под названием перезащиты. В табл. 33 приведены данные по защитной плотности тока для углеродистой стали в различных средах. Постоянный ток подводится к котлу от селеновых выпрямителей, включенных в сеть переменного тока через сварочный трансформатор. Сила тока выпрямителей для питания защиты 150 а, при напряжении 24 в, что соответствует данным предварительного расчета защиты. [c.306]

    В жесткой воде на стали может возникнуть обладающее некоторыми защитными свойствами покрытие, которое состоит в основном из СаСОз. Эта покровная пленка осаждается под действием щелочей — продуктов реакции, образующихся на катодных участках поверхности. Аналогичные покрытия постепенно образуются на катодно защищенной поверхности в контакте с морской водой (быстрее при высокой плотности тока). В случае хорошего сцепления с поверхностью такие покрытия способствуют также лучшему распределению защитного тока и уменьшению необходимого общего тока. [c.221]

    Оксидные покрытия на алюминии получают при комнатной температуре анодным окислением алюминия (анодированием) в соответствующем электролите, например разбавленном растворе серной кислоты, при плотности тока 100 А/м или более. Образующееся покрытие из А12О3 может иметь толщину 0,0025—0,025 мм. Для улучшения защитных свойств полученный таким образом оксид подвергают гидратации. Для этого анодированное изделие обрабатывают несколько минут в паре или горячей воде (такой процесс называется наполнением пленки). Повышенная коррозионная стойкость достигается, если наполнение пленки производится в горячем разбавленном хроматном растворе. Оксидные покрытия можно окрашивать в различные цвета непосредственно в ванне анодирования или впоследствии. [c.247]

    Таким образом, электрохимические исследования показывают, что механизм разрушения металла под защитными неадгезирован-ными полимерными пленками аналогичен механизму коррозии железа во влажной атмосфере. Независимо от наличия активатора на поверхности металла растворение железа в обоих случаях протекает в области активно-пассивного состояния. Разница заключается лишь в том, что активатор увеличивает плотность тока пассивации, а защитная полимерная пленка в силу диффузионного ограничения доставки влаги уменьшает ток пассивации. В общем случае ток пассивации является функцией влажности атмосферы, концентрации активатора и влагопроницаемости защитной пленки. [c.39]

    В начальный момент, когда катодный осадок еще не образовался, защитная плотность тока леншт в пределах 20—50 мА/м, а при [c.227]

    Качество и свойства осадков при постоянном составе электролита зависят от соотношения плотности тока и температуры. По мере повышения температуры в электролитах № 1 и № 2 происходит переход матовых осадков серого цвета сначала в светлые блестящие, затем в матовые молочные. Наибольший интервал плотностей тока для получения блестяш.их и твердых осадков соответствует в электролите № 1 средним темг[ерату-рам 40—60 °С. Блестящие осадки хрома толщиной до 1 мкм применяют в качестве внешнего слоя трехслойного защитно-деко-ративного покрытия Си—N1—Сг на стали. Как самостоятельное покрытие для защиты от коррозии такие осадки не очень пригодны вследствие высокой пористости. Однако это свойство в некоторых случаях используют для увеличения срока службы труигихся деталей, требующих постоянной смазки их поверхности, так как после выявления сетки трещин анодным травлением пористые осадки приобретают способность хорошо удерживать смазку. [c.46]


Смотреть страницы где упоминается термин Плотность тока защитная: [c.503]    [c.16]    [c.294]    [c.363]    [c.73]    [c.19]    [c.146]    [c.194]    [c.195]    [c.236]    [c.238]    [c.244]    [c.151]   
Теоретическая электрохимия Издание 2 (1969) -- [ c.479 ]

Теоретическая электрохимия Издание 3 (1975) -- [ c.536 ]




ПОИСК





Смотрите так же термины и статьи:

Защитный ток плотность

Плотность тока

Тока плотность Плотность тока



© 2025 chem21.info Реклама на сайте