Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук стеклование

    В области пониженных температур (/) деформации незначительны и обратимы, каучуки находятся в стеклообразном состоянии. Повышение температуры приводит к переходу каучука в высокоэластическое состояние, при котором происходят большие обратимые деформации (//). В области повышенных температур деформируемость каучука резко увеличивается и становится необратимой III), что отвечает вязкотекучему состоянию каучука. Стеклование зависит не только от температуры, но и от характера нагрузки. Так, при статических нагрузках и динамических нагрузках небольшой частоты температура стеклования ниже, чем при динамических нагрузках большой частоты. [c.183]


    Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их физическими и вязкоэластическими свойствами в широком интервале температур. При этом были установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния молекулярно-массового распределения на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования (см. гл. 2, 4). [c.15]

    Вулканизация и наполнение. Вулканизаты имеют слегка более высокое значение 7с, чем исходные каучуки. Введение наполнителей повыщает Тс обычно на несколько градусов. Повышение температуры стеклования в этих случаях обусловлено уменьшением подвижности цепей вследствие образования связей каучук —каучук и каучук — наполнитель. [c.45]

    Температура стеклования каучуков [c.45]

    Хорошо известно, что эластичность резин при данной температуре тем выше, чем ниже температура стеклования соответствующих каучуков, при этом динамические свойства резин контролируются скоростью высокоэластических процессов и зависят от внутренней структуры материала [19]. [c.88]

    Для некристаллизующихся каучуков коэффициент морозостойкости плавно изменяется в зависимости от температуры и быстро уменьшается до нуля около температуры стеклования [49]. [c.91]

    Каучуки регулярного строения имеют, как правило, низкие температуры стеклования. Вместе с тем их способность к кристаллизации осложняет эксплуатацию резин на основе этих каучуков при низких температурах, так как температура максимальной скорости кристаллизации обычно находится значительно выше температуры стеклования (см. гл. 2). [c.91]

    В настоящее время резервы получения высокоэластичных резин за счет снижения температуры стеклования каучуков практически исчерпаны для цыс-полибутадиена величина Гс близка к предельно возможному для углеводородных цепей значению Гс = —120°С. [c.92]

    Температура стеклования Гс полиизопренов почти не зависит от относительного содержания цис- и транс-1,4-звеньев. Натуральный каучук и балата (транс-1,4-полиизопрен) имеют близкие температуры стеклования (—70ч—72 °С). В то же время Тс повышается с увеличением доли 1,2- и 3,4-звеньев (рис. 5). Влияние этих структур на температуру стеклования полиизопренов может быть выражено функцией Гс =—0,74(100—С), где С —суммарное содержание 1,2- и 3,4-звеньев (в %) [19]. [c.205]


    Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При к = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий метакрилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНг— или —СН— [3, гл. 1П]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4]. [c.387]

    Морозостойкость и температура стеклования. Температура стеклования жидких каучуков определяется в первую очередь составом основной цепи. В случае блоксополимеров (табл. 5) или [c.436]

    Однако если судить о свойствах жидких каучуков при пониженных температурах по коэффициенту морозостойкости Км эластомеров на их основе [64], то хорошо видно влияние взаимного расположения функциональных групп, которое может даже оказаться сильнее влияния температуры стеклования каучука (при использовании одинаковых отверждающих агентов) (табл. 6). Полибутадиен, содержащий только концевые карбоксильные группы, обладает наименьшей температурой стеклования, однако величина Лм сильно изменяется с понижением температуры и достигает значение 0,5 уже при 5°С, Достаточно ввести в [c.437]

    Несмотря на лучшую морозостойкость каучука типа СКФ-260 по сравнению с каучуками типа СКФ-26, желательно иметь эластомеры с еще лучшей морозостойкостью. Недостаточно хороши и низкотемпературные характеристики каучуков типа ЕСД-006 и СКФ-460. Температуры стеклования этих сополимеров находятся в пределах — 10 Ч--15°С. [c.511]

    Каучук СКФ-260 мало склонен к кристаллизации и обладает температурой стеклования на 18—20°С ниже, чем каучуки типа СКФ-26. Указанные преимущества по морозостойкости проявляются и в поведении резин. Если сравнить температуры, при которых указанные резины имеют одинаковые коэффициенты морозостойкости (например, 0,1), то для СКФ-26 эта температура — 16°С, а для СКФ-260 —33 °С. Резины на основе СКФ-260 работоспособны при —30 °С. Так как температура хрупкости стандартных резин составляет —53-=--57 °С, то в отдельных случаях [c.518]

    Для линейных полимеров стеклообразное состояние и высокоэластичное состояние являются нормальными состояниями, относящимися только к различным температурным условиям. Температура, при которой охлаждаемый полимер переходит из высокоэластичного состояния в твердое (температура стеклования),является важной характеристикой полимера. Каучуки, например, отличаются тем, что их температуры стеклования ниже комнатной. Полимер 11 же с более высокой температурой стеклования находятся при обычных условиях в стеклообразном состоянии, но могут переходить в высокоэластичное состояние при достаточном повышении температуры, если она ниже температуры деструкции данного полимера. [c.583]

    НИЯ полимера, и ароматическими кольцами, обеспечивающими хорошую совместимость нефтяных пластификаторов с полярными полимерами. Эффективность пластификаторов зависит от температуры их стеклования (желательно, чтобы она была как можно ниже) и удельного объема, а также от состава каучука и условий эксплуатации резиновых технических изделий. [c.392]

    В настоящее время разработан ряд морозостойких каучуков особого наз-начения. Для этой цели применяют сополимеры дивинила с небольшими количествами стирола, а-метилстирола, октадецил-метакрилата и т. д. Б. А. Долгоплоск [67] получил таким путем сополимеры, температура стеклования которых снижается до —103°. [c.634]

    Коэффициент теплопроводности полимеров зависит от температуры. У аморфных полимеров в стеклообразном состоянии к растет с повышением температуры, достигает максимума, а затем либо колеблется (натуральный каучук, ПВХ, полиизобутилен), либо остается постоянным. На рис. 5.10 показана температурная зависимость к для непластифицированного и пластифицированного ПВХ. Пластификатор смещает температуру стеклования, поэтому в зависимости от области температур, в которой измеряется к, его значение либо ниже, либо выше значения к для непластифицированного ПВХ. [c.121]

    Известно, что при радикальной полимеризации не представляется возможным существенно регулировать структуру полимерной цепи. Анионная же полимеризация диенов впервые открыла возможность регулирования структуры полимера путем изменения природы щелочного металла и условий полимеризации. Еще в 30-х годах на Опы тном заводе литер Б было показано, что переход от натрия и калия к литию сопровождается повышением количества 1,4-звеньев в цепи и соответственно понижением температуры стеклования и улучшением морозостойкости полимера. На основании полученных данных был разработан промышленный способ и организовано производство морозостойкого литийбута-диенового каучука (СКБМ). [c.11]


    Для ряда блочных сополимеров, вследствие микрофазного расслоения в полимере, обусловленного несовместимостью разнородных блоков, наблюдаются две температуры стеклования. Так, для блочных бутадиен-стирольных каучуков одна температура стеклования лежит около —100°С, что несколько выше Гс полибутадиена, а вторая около 80 —немного ниже Гс атактического поли- [c.44]

    Для выяснения величины относительного влияния различных молекулярных параметров на эластические свойства резин, можно сравнить резины, полученные на основе каучуков с различной температурой стеклования. Данные, приведенные в табл. 5, показывают, что при равной плотности эластически эффективных узлов сетки вулканизаты, полученные на основе линейных каучуков, с [c.90]

    Как и все эмульсионные каучуки, БЭФ, БСЭФ и БНЭФ являются статистическими сополимерами, характеризующимися щи-роким молекулярно-массовым распределением. Температура стеклования каучуков БЭФ составляет примерно —80 °С, БСЭФ-30 —65°С и БНЭФ-26 40 °С. [c.406]

    Температуры стеклования жидких каучуков (полимердиолов) и ТЭП, полученных на их основе [c.451]

    Силоксановые каучуки кристаллизуются при более низких температурах, чем углеводородные, но скорость и глубина кристаллизации у них выше из-за высокой подвижности полимерных цепей. ПДМС быстро кристаллизуется - при температурах ниже —50 °С (с максимальной скоростью при —80 °С) и плавится при температурах выше —46 °С. Способность к кристаллизации снижается при замещении части метильных групп другими, причехч при одинаковом содержании модифицирующих групп (фенильных, этильных, пропильных и др.) скорость кристаллизации минимальна при их статистическом распределении и максимальна у блоксополимеров. Кристаллизация резко замедляется при введении в цепь уже 8—10% (мол.) статистически распределенных модифицирующих звеньев. Совсем не кристаллизуется метил (3,3,3-трифторпро-пил)силоксановый каучук. Введение в силоксановую цепь ариле-новых или карбораниленовых групп при их регулярном расположении повышает степень кристалличности и 7пл> а нерегулярно построенные сополимеры обычно аморфны. Как стеклование, так и кристаллизация силоксановых блоксополимеров при достаточной длине блоков происходит раздельно в каждом блоке при соответствующих гомополимерам температурах. Кристаллизация более высокоплавкого блока может не иметь места или происходит при температуре ниже обычной, если его длина мала [3, с. 19—20]. [c.484]

    Кроме того, значительные межмолекулярные взаимодействия в перфторированном аналоге этилен-пропиленового каучука делают фторированный сополимер жестким пластиком. Рентгеноструктурный анализ сополимера, содержащего 107о гексафторпропилена, показал, что при этом не нарушается кристаллическая структура и сополимер не приобретает пласто-эластических свойств. Высокая температура стеклования полигексафторпропилена [c.502]

    Температуры стеклования таких каучуков на 80—100°С выше, чем у имеющих примерно такую же термостойкость каучукоз на основе полидиметилсилоксана, а их ненаполненные вулканизаты при комнатной температуре в десятки раз прочнее, чем ненаполненные вулканизаты силоксановых каучуков. Однако водородные связи, особенно в данном случае, когда атом водорода связан с атомом углерода, весьма слабы и легко разрушаются при нагревании, вследствие чего прочность ненаполненных резин из фторкаучуков при высоких температурах резко снижается, приближаясь к прочности силоксановых резин. [c.506]

    Образцы гомополимера ЭХГ (каучук СКЭХГ) имели следующие свойства [40] плотность 1350 кг/м температура стеклования —28°С, вязкость по Муни 30—50. Внешний вид гомополимера — белая рыхлая масса. В качестве стабилизатора для этого каучука применялся сантовайт кристалле — бис(3-метил-5-т/ ег-бутил-4-гидроксифенол) сульфид. [c.581]

    Образцы сополимера ЭХГ с ОЭ (каучук СКЭХГ-С) имели следующие свойства плотность при 20° С 1260 кг/м температура стеклования —44,7 °С вязкость по Муни 70—80 содержание хлора 25,8% (масс.), что соответствует эквимолекулярному соотношению звеньев эпихлоргидрина и окиси этилена. [c.582]

    Вопрос. Почему натуральный, силиконовые и полиуретановые каучуки имеют низкие - температуры стеклования, а целлюлозы, поли-л-фенилентерефталамид - высокие  [c.141]

    К термостойким каучукам относятся в первую очередь диметил-полисилоксановые каучуки (силастики) с температурой стеклования ниже 120° и эластичные до 200°. Они не стареют при нагревании и хранении. Их бензостойкость растет от введения полярных групп или атомов фтора. Вероятно, еще более стойки при высоких температурах (до 500°) различные неорганические эластомеры, получаемые на основе соединений азота, фосфора, бора и других элементов, но этот вопрос еще не разработан. Из чисто органических сополимеров наиболее термостабильными являются, вероятно, описанные выше лактопрены, сохраняющие основные физико-химические свойства неизменными после длительных выдерживаний в маслах при 170—200°. [c.634]

    Поливиниловый спирт относится к сравнительно небольшой группе синтетических полимерных соединений, хорошо растворимых в воде, гликолях, глицерине и в то же время обладаюш,их высокой стойкостью к действию большинства универсальных органических растворителей. Особенно ценна высокая масло-, бензо- и керосиностойкость поливинилового спирта, удачно сочетающаяся с высокой упругостью пластифицированного поли-.мера (пластификаторы—глицерин или гликоли) и со способностью его образовывать бесцветные прозрачные, светостойкие пленки и нити, легко формоваться в изделия методом литья под давлением. Пленки и изделия из поливинилового спирта отличаются высокой поверхностной твердостью и низкой хладотекучестью в нагруженном состоянии. Несмотря на присутствие пластификатора в эластичных пленках, они обладают хорошей прочностью, особенно при растяжении ( 600 кг1смР ) и истирании, превышающей прочность резин. Газонепроницаемость пленок из поливинилового спирта в 15—20 раз (в зависимости от степени пластифицирования) превышает газонепроницаемость вулканизованной пленки натурального каучука. Такая прекрасная газонепроницаемость и высокая температура стеклования поливинилового спирта обусловлены возникновением водородных связей между звеньями соседних макромолекул  [c.284]

    Сополимеризация бутадиена с акрилонитрилом дает возможность значительно увеличить полярность структуры. Вследствие эт )го температура стеклования сополимера при соотношении исходных мономеров 1 1 возрастает до —35°, вместо —70° для полибута-диепа. Резины на основе таких сополимеров менее эластичны и морозостойки по сравнению с полибутадиеновыми, но зато более прочны и не набухают в бензине, керосине и смазочных маслах. Из бутадиен-нитрильных каучуков изготовляют резиновые баки для хранения жидкого топлива и смазочных масел, бензо- и маслостойкие детали, эластичные маслостойкие шланги и т. п. [c.514]

    Сополимеры бутадиена со стиролом также имеют более полярную структуру, чем полибутадиен, поэтому при эквимолекулярном соотношении мономеров температура стеклования сополимера повышается до —45°. Резины на основе бутадиен-стирольных каучуков более прочны, чем резины из сополимеров бутадиена и акрилонитрила, но сохраняют растворимость в бензине и керосине, присуш,ую резинам из полибутадиена. [c.514]


Смотреть страницы где упоминается термин Каучук стеклование: [c.45]    [c.62]    [c.279]    [c.453]    [c.484]    [c.507]    [c.516]    [c.619]    [c.574]    [c.331]    [c.391]   
Технология резины (1964) -- [ c.82 , c.83 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Каучуки температуры стеклования

Синтетические каучуки стеклование

Температура стеклования каучуко



© 2025 chem21.info Реклама на сайте