Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азота галогениды

    Галогениды фосфора в отличие от взрывоопасных галогенидов азота экзотермичны и прочны. При действии воды легко гидролизуются  [c.316]

    Важнейшие бинарные соединения — это соединения элементов с кислородом (оксиды), с галогенами (галогениды), азотом (нитриды), серой (сульфиды), углеродом (карбиды) и соединения металлов с водородом (гидриды). Их названия по правилам МН образуются из латинского корня названия более электроотрицательного элемента и русского названия менее электроотрицательного элемента в родительном падеже. Например СаО — оксид кальция, КС1 — хлорид калия, BN — нитрид бора, uS—сульфид меди, АЦСз — карбид алюминия, NaH — [c.31]


    Электролитические ячейки обычно изготовляют из кварца, который устойчив ко многим галогенидам, кроме фторидов, а также к окислителям — хлору, кислороду, азоту. Однако он легко взаимодействует с расплавами, содержащими ионы низших валентностей многих активных металлов (редкоземельные элементы, цирконий, то )нй, уран и др.), и с активными металлами. [c.101]

    Сгорание топливовоздушной смеси начинается в конце такта сжатия и заканчивается примерно в середине рабочего хода поршня. Газы, образовавшиеся в процессе сгорания, выбрасываются в атмосферу в такте выпуска. Кроме основных продуктов сгорания бензина — Н О и СО , отработавшие газы содержат оксид углерода, оксиды азота, оксиды серы, низкомолекулярные углеводороды, элементарный углерод (сажу), продукты сгорания различных присадок, например оксиды свинца и галогениды свинца при использовании этилированных бензинов, а также азот и неизрасходованный на сгорание топлива кислород воздуха. Многие из примесей к основным продуктам сгорания являются токсичными соединениями, загрязняющими окружающую среду. Содержание токсичных продуктов в отработавших газах в значительной степени зависит от химического состава топлива. [c.16]

    Фторид азота — очень устойчивое соединение. Несмотря на то что ЫНз также довольно устойчивое вещество, NH2P и NHP2 чрезвычайно взрывчаты. В отличие от NF3 остальные га-логениды азота N I3, ЫВгз и NI3 чрезвычайно взрывчаты. Объясните причины различной устойчивости галогенидов азота. [c.42]

    Чаще всего для полимеризации используют многокомпонентные каталитические системы, в которые наряду с соединением переходного металла входит сокатализатор — органическое производное или галогенид элемента I—IV групп периодической системы и активатор — соединение, содержащее атомы кислорода, галогена, азота, фосфора или серы. Более подробные сведения о составе каталитических систем, применяемых для полимеризации циклоолефинов, можно найти в недавно опубликованном обзоре [5]. [c.319]

    К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы КаСО, где К — органический радикал или атом галогена. [c.284]

    Иначе говоря, галогены являются окислителями. Они соединяются с очень многими химическими элементами, образуя галогениды. Галогены реагируют с подавляющим большинством металлов и неметаллов непосредственно, за исключением кислорода, углерода, азота и благородных газов. Фтор реагирует даже с ксеноном. Связи галогенов с металлами главных подгрупп I и II групп носят преимущественно ионный характер, с остальными — в основном ковалентный. [c.102]


    Известен один галогенид азота — фторид NF3, весьма инертное вещество. Остальные галогены с азотом образуют нитриды, например I3N — нитрид хлора (I). Нитриды галогенов чрезвычайно активны и разлагаются при нагревании при полном гидролизе они образуют гидрат аммиака и кислоту галогена (J)  [c.212]

    Состав галогенидов азота и фосфора в основном соответствует формулам ЕХз и ЕХ5, где Е=М, Р и X — галоген. Существуют также смешанные (по галогену) три- и пентагалогениды. Из-за наличия свободной электронной пары молекулы тригалогенидов имеют пирамидальное строение. Соединения состава ЕХ5 в газовой фазе имеют тригонально-бипирамидальное строение. [c.537]

    Приготовление стандартного раствора из азеотропа H l с водой. Необходимо работать строго по приведенной методике для получения абсолютно чистой конц. НС1 в аппарате для получения газов к чистой концентрированной соляной кислоте по каплям добавляют концентрированную серную кислоту, не содержащую галогенидов и нитратов. Поток газа промывают солянокислым раствором хлорида меди(1) (для связывания следовых количеств оксида азота и свободного хлора) и пропускают в прокипяченную дистиллированную воду, находящуюся в пропаренной колбе из кварцевого стекла. Кислоту хранят в закрытом сосуде в темноте. [c.155]

    Большинство безводных галогенидов гигроскопично, поэтому их рекомендуется для хранения запаять в той же трубке, в которой проводили обезвоживание, или перенести в токе сухого газа (азот, оксид углерода (IV) в пробирку для запаивания. [c.59]

    В оксидах и галогенидах, "как правило, наблюдается соответствие между ковалентностью и степенью окисления элемента. Так, в воде и ковалентность, и степень окисления атомов Н равны единице, в МпОГ — и степень окисления, и ковалентность марганца равны семи. В более сложных соединениях это соответствие пропадает, как, например, у пероксида водорода, в котором степень окисления кислорода равна —1, хотя ковалентность кислорода равна 2. Отсутствует такое соответствие у азота азотной кислоты и ее производных. Степень окисления атома N в азотной кислоте равна по модулю сумме степеней окисления трех атомов О и одного атома Н 3(—2) + 1 = 5 (поскольку сумма степеней окисления отдельных атомов в незаряженной молекуле должна быть равна нулю.) В то же время известно, что азот не может проявлять ковалентность пять, поэтому и в азотной кислоте и ее производных ион М четырехковалентный. Этот ион имеет сам по себе степень окисления 1+, что в сочетании с четырьмя ковалентными связями с атомами О приводит к степени окисления 5. [c.253]

    Однако изменять свои спины в магнитном поле способны лишь неспаренные электроны. При наличии же на данной орбитали или зонном уровне двух спаренных электронов их магнитные моменты будут направлены в противоположные стороны и взаимно погасят друг друга. Магнитная восприимчивость подобной пары электронов будет отрицательной величиной, т. е. заполненные электронные орбитали создают диамагнитный эффект. С этой точки зрения диамагнитными свойствами будут обладать в какой-то мере любые микрочастицы, содержащие в своей структуре заполненные электронные орбитали. Что касается простых веществ, то ярко выраженной диамагнитной восприимчивостью будут обладать лишь те из них, атомы, молекулы или ионы которых имеют только заполненные электронные орбитали. Примерами подобных веществ могут служить благородные газы, газообразные водород и азот, кристаллы галогенидов и щелочноземельных металлов, алмаз и кремний. [c.301]

    Галогениды и многочисленные окислы азота менее устойчивы, и получить их прямым синтезом при обычных условиях -невозможно. Причиной этого является повышенная прочность молекул N2 и наименее металличная природа азота среди всех элементов V группы периодической системы. [c.80]

    Сверху вниз в группах периодической системы нуклео-фильность возрастает, хотя основность падает. Так, обычный порядок нуклеофильности галогенидов выглядит следующим образом 1->Вг->С1 >р- (хотя, как будет показано ниже, этот порядок зависит от природы растворителя). Аналогично любой серосодержащий нуклеофил сильнее соответствующего кислородсодержащего аналога, и то же справедливо для соединений, содержащих фосфор и азот. Главная причина различий между основностью и нуклеофильностью заключается в следующем меньшие по размеру отрицательно заряженные нуклеофилы лучше сольватированы обычными полярными протонными растворителями, т. е. поскольку отрицательный заряд С1 по сравнению с I" более сконцентрирован, первый более плотно окружен оболочкой молекул растворителя, которая образует барьер между нуклеофилом и субстратом. Это особенно важно для полярных протонных растворителей, молекулы которых могут образовывать водородные связи с нуклеофилами небольшого размера. В качестве доказательств можно привести следующие факты многие реакции нуклеофильного замещения с участием небольших отрицательно заряженных нуклеофилов значительно быстрее происходят в полярных апротонных, чем в протонных растворителях [260], и в ДМФ — апротонном растворителе — порядок нуклеофильности галогенид-ионов имеет следующий вид С1->Вг->1- [261]. В другом эксперименте, проведенном в ацетоне, в качестве нуклеофилов были использованы ВщЫ+Х- и их (где Х- галогенид-ион). Ассоциация галогенид-иона в первой соли значительно ниже, чем в иХ. Относительные скорости реакций с участием ЫХ составили для С1- 1, для Вг- 5,7 и для 1 6,2 это нормальный порядок, тогда [c.76]


    X—Н связью (X—кислород, азот, галогенид, углероде электроотрицательными заместителями). Акцептором водорода в таком комплексе выступает гетероатом молекулы (кислород, азот). Энергия водородной связи колеблется в пределах 10—50 кДж/моль. Расстояние О... Н Б комплексе типа О. .. Н - О — примерно на 10 м короче, чем сумма ван-дер-ваальсовых радиусов, т. е. водородная связь стягивает две молекулы в одну более компактную частицу. Водородная связь X — Н. .. V образуется за счет энергии электростатического притяжения дипольной X —Н-связи и остаточного заряда на атоме У. Водородная сязь тем прочнее, чем полярнее связь X — Н. [c.145]

    В патентной литературе предлагается для облегчения крашения полиолефиновые волокна предварительно обрабатывать различными реагентами, например хлорсульфоновой кислотой, четыреххлористым углеродом , двуокисью азота , галогенидами металлов др Однако едва ли возможно применение этих методов на практике. [c.219]

    В виде мелких частиц Ln пирофорны (из сплава Ре -f- 30% Се изготовляют кремни зажигалок). Они активно взаимодействуют с кислородом, азотом и мг[огими другими элементными веществами. Значения AGf оксидов и галогенидов Ln весьма велики, поэтому при сильном нагревании Ln вытесняют большинство металлов из их соединений с кислородом и галогенами. [c.604]

    Следует назвать ряд больших сводок по термодинамическим свойствам окислов и галогенидов при обычных и высоких температурах, опубликованных Брюером с сотр. Сюда включено большое число новых значений, вычисленных авторами на основе той или другой закономерности в свойствах аналогичных соединений. Из числа работ, посвяшенных специально низкотемпературным свойствам, здесь можно сослаться лишь на работы содержащие данные об основных термодинамических свойствах гелия, водорода, азота, кислорода и окиси углерода. [c.80]

    Моющая и противокоррозионная присадка, содержащая азот и серу, была синтезирована реакцией алкенилянтарного ангидрида со свободной серой и дальнейшей обработкой полученного соединения полиалкенилполиамином [пат. США 3306908]. Для синтеза сукцинимидной присадки, обладающей моющими, противокоррозионными и противоизносными свойствами, продукт реакции алке- нилянтарного ангидрида с амином обрабатывали солями (нитратами, нитритами, галогенидами, фосфатами, фосфитами, сульфатами, сульфитами, карбонатами, боратами) и оксидами кадмия, никеля и других металлов для образования комплексных соединений [пат. США 3185697]. К сукцинимидным относится также присадка Олоа-1200, производимая в промышленных масштабах в США, Англии, Франции. [c.92]

    Измерение поверхностного дипольного момента р, позволяет судить о доле ионной составляющей межатомных связей, возникающих в процессе хемосорбции. В некоторых случаях, как, например, при сорбции на вольфраме паров натрия, калия и цезпя ди-польиые моменты достигают заметной величины, что указывает на высокую степень ионности связей. Для сравнения укажем, что дипольный момент монослоя тория на вольфраме имеет в 4—5 раз меньшее значение, чем дипольные моменты монослоев щелочных металлов. В данном случае связь преимущественно ковалентная. Поверхностные межатомные связи, образующиеся при сорбции на металлах и угле водорода, окиси углерода, азота, углеводородов, галогенидов отличаются высокой долей ковалентности. Были пблу-чены многочисленные доказательства того, что сорбция вышеуказанных газов на переходных металлах и близких им металлах группы 1В Периодической системы Д. И- Менделеева происходит благодаря образованию ковалентных связей с использованием не полностью занятых -орбиталей этих металлов (табл. 5). [c.197]

    Другим типом комплексных электролитов являются растворы галогенидов алюминия и алюмоорганических соединений в ароматических углеводородах. Например, к 100 см 10 %-го раствора алюминийтриэтилэфирата в ксилоле добавляют в токе азота 80 г порошка AI I3, смесь кипятят и отделяют слой тяжелой темно-коричневой жидкости, которую подвергают электролизу. При плотности тока 120—130 А/м на медном катоде осаждают блестящие, плотно сцепленные осадки алюминия. Катодный выход по току 65 %. Аналогичным способом может быть получен электролит из хлорида алюминия, трифенилалюминия и ксилола. [c.110]

    Высшие галогениды углерода, азота и серы в воде мало растворимы и ею не разлагаются I4, NF3, SFe- [c.342]

    ХИМИЯ ПЛАЗМЫ. Плазма — ионизованный газ, используется как среда, в которой протекают в[лсокотемператур-ные химические процессы. С помощью плазмы достигают температуры около миллиона градусов. Плазма, используемая в химии, в сравнении с термоядерной считается низкотемпературной (1500—3500 С). Несмотря на это, в химии и химической технологии она дает возможность достижения самых высоких температур. В химии плазма используется как носитель высокой температуры для осуществления эндотермических реакций или воздействия на жаростойкие материалы ири их исследовании. Технически перспективными процессами X. п. считаются окисление атмосферного азота, получение ацетилена электро-крекингом метана и других углеводородов, а также синтез других ценных неорганических и органических соединений. Специальными разделами X. п. является плазменная металлургия — получение особо чистых металлов и неметаллов действием водородной плазмы на оксиды или галогениды металлов, обработка поверхностей металлов кислородной плазмой для получения жаростойких оксидных пленок или очистки поверхности (в случае полимеров). К X. п. примыкают также процессы фотохимии (напр., получение озона). Здесь фотохимический процесс протекает в той же плазме, которая служит источником излучения. [c.275]

    Вещества, являющиеся донорами электронных пар, называют основаниями Льюиса, а акцепторы электронных hap - кислотами Льюиса. К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы Rj O (где R - органический радикал или атом галогена). Кислотами Льюиса являются галогениды бора, алюминия, кремния, олова, фосфора, мышьяка, сурьмы и многих других элементов, ионы-комплексообразователи Ag, Со , Сг , Pt и др. [c.302]

    Для дальнейшего обезвоживания других галогенидов (например, цинка, магния, кальция, меди и т. д.) их помещают тонким слоем в среднее колено стеклянной трубки (рис. 2, 3), через которую при нагревании пропускают слабый ток сухого галогена, галогеноводорода или галогена с азотом или азотоводородной смесью. При этом необходимо следить за изменением температуры, которую при навесках 2—3 г вещества можно повышать на 40—50 °С в течение 1 ч. Процесс протекает 2—3 ч. Если же берут большие навески, то время обезвоживания увеличивается. Продукт охлаждают в слабом токе газа, применявшегося для удаления влаги, а затем прогревают его в течение 5—10 мин в токе сухого азота или оксида углерода (IV). При этом адсорбированный галоген или галогеноводород уносится током газа. [c.59]

    На рис. 7.14 показано улучшение формы пика, достигаемое силанированием. Лучшими носителями в газовой хроматографии для анализа сильно полярных (НаО, NHз) или очень агрессивных веществ (галогеноводородов, галогенидов фосфора, окиси азота) являются стеклянные микрошарики или политетрафторэтилен (хейдеф-лон, тефлон). [c.365]

    Все металлы обладают большим сродством к неметаллам с кислородом 0Ш1 образуют оксиды МО (М = Ве - Ка), с водородом-гмдрмды МН2, с азотом-нитриды МзЫ2, с галогенами-галогениды, например хлориды МС) , с углеродом-ка б ()ы (ацетилениды) МС2, с серой-с>>ль м<)ы М8 и т.д. [c.170]

    Реакция Брауна, которая включает расщепление третичных аминов под действием бромоциана, дающее алкилбромид и ди-замещенный цианоамид, применима ко многим третичным аминам (см. обзор [844]). Обычно отщепляется та группа R, которой отвечает наиболее реакционноспособный галогенид (например, бензильная или аллильная). В случае простых алкильных групп легче всего отщепляются наименьщие по объему. Одна или две из соединенных с азотом групп могут быть арильными, но они не отщепляются. Эта реакция часто используется для расщепления циклических аминов. Вторичные амины тоже вступают в эту реакцию, но выходы обычно низки [845]. [c.173]

    Как растворитель двуокись серы обладает интересными особенностями. Например, галондоводороды в ней практически нерастворимы, а свободный азот растворим довольно хорошо (причем с повышением температуры растворимость его возрастает). Элементарная сера в жидкой ЗОг нерастворима. Растворимость в ней воды довольно велика (около 1 5 по массе при обычных температурах), причем раствор содержит в основном индивидуальные молекулы НгО, а не их ассоциаты друг с другом или молекулами растворителя. По ряду С1—Вг—I растворимость галогенидов фосфора быстро уменьшается, а галогенидов натрия быстро возрастает. Фториды лития и натрия (но не калия) растворимы лучше их хлоридов и даже бромидов. Хорошо растворим Хер4, причем образующийся бесцветный раствор не проводит электрический ток. Напротив, растворы солей обычно имеют хорошую электропроводность (например, для ЫаВг при 0°С имеем К = Ъ- 10 ). Для некоторых из них были получены кристаллосольваты [например, желтый КЬ (302)4]. Подавляющее большинство солей растворимо в жидкой ЗО2 крайне мало (менее 0,1%). То же относится, по-видимому, и к свободным кислотам. [c.329]

    В органических растворителях гидриды нерастворимы. Исключение составляет гидрид лития. В связи с этим надо отметить, что и своеобразные свойства фторида лития отличают его от других галогенидов. Гидрид лития реагирует при нагревании с азотом, давая амид, имид и даже нитрид лития. РГнтересны реакции обмена с этим гидридом. Так, с тетрахлоридом кремния получается силан и хлорид лития — водород, следовательно, обменивается на хлор. [c.290]

    При нагревании эти металлы окисляются азотом и углеродом с образованием тугоплавких нитридов и карбидов переменного состава. При взаимодействии с галогенами получаются жидкие галогениды МеГ4, при действии воды подвергающиеся полному гидролизу с образованием Ме(0Н)4. [c.423]

    Если хлористую, бромистую или иодистую соль диазония нагревать с соответствующей солью калия (K I, КВг, KI), реакция протекает также с выделением азота. Но вместо диазогруппы в бензольное ядро вводится галоген — образуются ароматические гало-генпроизводные. В случае хлористых и бромистых солей реакция протекает гладко лишь в присутствии катализаторов — галогенидов одновалентной меди ( u l, СиВг реакция Зандмейера). Например  [c.396]

    Галогениды азота ЫГз в целом весьма непрочные соединения (МС1з и N 3 — легко взрываются). Достаточной прочностью характеризуется №3. [c.437]


Смотреть страницы где упоминается термин Азота галогениды: [c.463]    [c.31]    [c.140]    [c.66]    [c.80]    [c.45]    [c.144]    [c.292]    [c.16]    [c.198]    [c.200]    [c.178]    [c.396]    [c.422]   
Неорганическая химия (1989) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Галоидирование N-галоидаминами и галогенидами азота



© 2025 chem21.info Реклама на сайте