Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химия за пределами молекул

    Таким образом, значение теории броуновского движения выходит далеко за пределы коллоидной химии, в которой она, кстати говоря, явилась первой количественной теорией. Теория броуновского движения, согласно которой движение коллоидных частиц — прямое следствие теплового движения молекул, приобрела огромное значение в физической химии, физике и философии, явившись убедительным обоснованием правильности материалистического мировоззрения. Исследование броуновского движения привело к созданию теории флуктуаций и способствовало развитию статистической физики. [c.65]


    Ограниченный характер и границы применимости стехиометрических законов химии. Современная формулировка стехиометрических законов. При образовании подавляющего большинства неорганических соединений их состав может быть переменным в пределах области гомогенности. Постоянный и неизменный химический состав наблюдается только для молекул (например, N1 3, 502 и т. п.), а также кристаллов с молекулярной структурой. А последних среди твердых неорганических веществ очень мало, и они представляют исключения (менее 5%)- Таким образом, молекулы являются одной из форм существования химических соединений, но не единственной. Для типичных твердых неорганических простых веществ и соединений характерна немолекулярная форма существования вещества. [c.24]

    Переходя к следующему уровню организации, необходимо рассмотреть с и с т е м ы, состоящие из центрального ядра и частиц в поле ядра. Это — атомы, привлекающие внимание химиков в гораздо большей степени, чем частицы в ящиках. Однако и в атомах устойчивость есть следствие ограничений, налагаемых на движение частиц. Из элементарного курса химии известно, что энергетические уровни, отвечающие стационарным состояниям атомной системы, дискретны и переходы между ними связаны с излучением или поглощением кванта энергии. Атомы, следовательно, тоже защищены от случайных влияний. Это относится и к еще более организованным системам — молекул и твердых кристаллических тел. Но по мере усложнения систем появляются новые факторы, роль которых незаметна на низших уровнях. Обмен энергией или массой зависит от геометрического соответствия между реагирующими молекулами, от распределения электронной плотности в пределах молекулы, наличия экранирующих групп и т. п. Возникает вопрос, в какой мере можно распространить принцип защиты на сложные системы. Можно ли утверждать, что в таких системах любые, даже слабые внешние возмущения или химические влияния поведут к развитию процесса, итогом которого будет глубокая перестройка системы  [c.51]

    Основными соединениями в органической химии являются углеводороды, содержащие только два эл( мента СиН. Разнообразие углеводородов обусловлено различными формами гибридизации углеродных атомов и сочетанием их в пределах молекулы одного и того же соединения. [c.453]

    В отличие от коллоидной частицы, макромолекула обладает способностью изменять свою форму в весьма широких пределах, что позволяет применять к растворам ВМС статистику гибких цепей. Особенности свойств растворов ВМС (например, существование отдельных молекул, гибкость цепей) породили в последние годы тенденцию к выделению растворов ВМС из круга дисперсных систем с перспективой создания специальной дисциплины — физической химии ВМС и их растворов. Подобная тенденция вряд ли имеет достаточные основания. Отличительные признаки в известной мере формальны и не устраняют общности, существующей между этими двумя классами, несмотря на целый ряд различий, которые в настоящее время не представляются столь абсолютными. Так, исследование некоторых свойств (светорассеяние и другие) растворов ВМС позволяет обнаружить известную гетерогенность этих систем, а теории, основанные на представлении о макромолекуле как отдельной микрофазе, получают в настоящее время широкое признание и оказываются весьма перспективными. Общность же двух классов проявляется не только в свойствах, непосредственно связанных с размерами частиц, но и в существовании непрерывного перехода от одного класса к другому. Растворы ВМС легко превращаются в типичные гетерогенные золи при непрерывном, часто незначительном изменении состава среды. Так, белок, растворенный в воде до молекул, при добавлении спирта переходит в лиофобный золь при непрерывном изменении состава среды. [c.15]


    Согласно определению Лена [38о], супрамолекулярная химия, химия за пределами молекулы, — это созданная химия межмолекулярной связи, так же как молекулярная химия — это химия ковалентной связи. Это в высокой степени междисциплинарная область науки, охватывающая химические, физические и биологические особенности химических частиц, соединенных и организованных с помощью межмолекулярных (не ковалентных) связывающих взаимодействий . [c.509]

    Странным образом этот бурный расцвет органической химии долгое время проходил почти незамеченным химиками, работающими в области органического катализа. Лишь немногие ученые пытались объяснить результаты эксперимента с позиций конформационной теории. Возможно это связано с тем, что конформационный подход сравнительно мало эффективен в случае простых реагирующих молекул, содержащих менее пяти атомов углерода, а также реакций, идущих по ионным механизмам. Однако для каталитических реакций углеводородов, содержащих 5 или более атомов углерода, особенно на металлических катализаторах, конформационный подход становится в определенных пределах тем эффективнее, чем больше молекула. К объяснению многих фактов в этой области часто не видно иного подхода. По-видимому, в таких случаях конформационные эффекты могут определять механизм и направление реакции. [c.14]

    На первый взгляд может показаться, что протекание реакций по механизму молекулярной перегруппировки, т. е. в одну стадию, по крайней мере, для мономолекулярных реакций или реакций первого порядка (истинные мономоле-кулярные реакции всегда являются реакциями первого порядка в области достаточно высоких давлений), является более экономным или выгодным. Действительно, процесс перегруппировки связей, который состоит в разрыве одних и возникновении других связей, в пределах одной молекулы может происходить скомпенсированным путем, т. е. облегчаться за счет выгодных внутренних переходов, разрещен-ных квантовой химией. При этом для реакции может потребоваться меньшая энергия, чем энергия разрыва отдельных связей. Если бы эти.внутренне скомпенсированные переход, ды лежали в природе процесса разложения молекул органических соединений, то молекулярный механизм распада являлся бы единственным реальным путем распада этих веществ. [c.14]

    Все растворы относятся к дисперсным (раздробленным) системам. Раствор может оставаться гомогенной системой, если частицы растворенного вещества не существуют в виде достаточно крупных ассоциатов, отделенных от растворителя поверхностью раздела, т. е. не образуют отдельной фазы. Считается, что раствор остается истинным, если размер частиц растворенного вещества не превышает 1 нм. При увеличении размеров частиц в пределах от 1 до 100 нм раствор приобретает специфические свойства, и если поверхность такой частицы, включающей большое число молекул вещества, не имеет электрического заряда, то раствор разрушается и вещество выпадает в осадок. При наличии на поверхности частицы плотного электрического заря (а за счет адсорбции ею из раствора ионов одного знака или сильно полярных молекул разрушения раствора не происходит. Такие частицы называются мицеллами, а сами растворы — коллоидными. Изучением строения и свойств коллоидных растворов занимается коллоидная химия. [c.193]

    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Говоря об определяющей роли электростатических взаимодействий в химии, следует иметь в виду, что в природе вообще не так уж много фундаментальных (не зависящих друг от друга) типов взаимодействий. Это (помимо электромагнитных взаимодействий) гравитационные взаимодействия и еще не понятые до конца два типа взаимодействий между элементарными частицами. Последние действуют только на очень малых расстояниях порядка размера атомных ядер и никакой ощутимой роли за пределами этих расстояний не играют.. Гравитационные взаимодействия слишком малы для отдельных атомов и молекул. По закону Ньютона сила Р,с которой притягиваются две точечные массы /Пх и тз на расстоянии г, равна  [c.11]


    Говоря об определяющей роли электростатических взаимодействий в химии, следует иметь в виду, что в природе вообще не так уж много фундаментальных (не зависящих друг от друга) типов взаимодействий. Это электромагнитные, гравитационные и так называемые слабые и сильные взаимодействия между элементарными частицами. Последние действуют только на очень малых расстояниях порядка размера атомных ядер и никакой ощутимой роли за пределами этих расстояний не играют. Гравитационные взаимодействия слишком малы для отдельных атомов и молекул. [c.13]

    Антиномия понятий структуры и динамики, существовавшая во все времена истории структурной химии, начиная с Берцелиуса и до 60-х годов текущего столетия, таким образом, полностью исключается в ходе приближения химических знаний к наиболее глубоким слоям сущности внутреннего строения молекул. Это открывает новые возможности прогнозирования реакционной способности веществ с целью управления химическим процессом. Вместе с тем на этой ступени эволюции понятия структуры становятся ясными не только дальнейшие, по существу безграничные перспективы развития структурной химии, но и пределы ее использования, т. е. необходимость подъема химических знаний на уровень третьей концептуальной системы — учения о химическом процессе. [c.97]

    Теоретическое и экспериментальное исследование хемосорбции — процесса чрезвычайно сложного и весьма важного в практическом отношении, составляет в настоящее время большой и самостоятельный раздел физической и коллоидной химии, излагаемый в специальных монографиях и выходящий за рамки настоящего учебника. Отметим лишь, что для теории почти несущественным является центральный для физической адсорбции вопрос — двух- или трехмерен поверхностный слой, поскольку хемосорбционные силы локализованы, в основном, в пределах, одной молекулы. Поэтому рассмотренные выше теории адсорбции, основанные на концепции монослоя, применимы, в принципе,, к хемосорбции, однако расшифровка констант, характеризующих химическое взаимодействие, требует квантово-химической трактовки. Для установления кинетических закономерностей используется теория переходного состояния. Рассмотрение сил базируется на теориях электрического изображения (металлы) и на полупроводниковых теориях (окислы, сульфиды и др.). В общем можно сказать, что трактовка хемосорбции как процесса образования двухмерных химических соединений основывается на современной теории твердого состояния. [c.170]

    Приведенные соображения дают основу для определения границ области коллоидного состояния в качестве нижней границы области размеров принято гармоническое соотношение между поверхностью и объемом, отвечающее значительной доле особенных молекул (вблизи максимума кривой), то есть л 1 нм. Верхней границей можно считать ту, где доля особенных молекул еще отличима от нуля и может быть экспериментально обнаружена по изменениям свойств, связанных с особенными молекулами. Например, захват молекул из газовой или жидкой фазы твердой поверхностью может быть еще аналитически определен. Если считать, что в настоящее время изменения, составляющие 0,1 %, лежат за пределами ошибок опыта, мы придем к значению 1 мкм (в начале XX в. за верхнюю границу принимали 0,1 мкм, что соответствует 1 % точности). Таким образом, область коллоидного состояния-. 1 нм — 1 мкм в то же время современная коллоидная химия изучает (как было сказано) и более крупные объекты, поскольку в них обнаруживаются признаки, присущие коллоидным системам. [c.10]

    Заканчивая эту главу следует еще раз обратиться к термину ненасыщенная молекула. Из всего изложенного становится ясным, что старинное понятие о ненасыщенности возможно испытает известную эволюцию, которая будет полезна для перспектив развития химии. Прежде всего ясно, что о насыщении, т. е. о верхнем пределе серии устойчивых соединений данного атома с атомами другого элемента, следует говорить не в абсолютном смысле, а в относительном, зависящем, например, от температуры. [c.306]

    Квантово-механическая модель молекулы получила количественное подтверждение в экспериментальной химии, что позволило использовать метод валентных связей ( С), или электронных пар, для описания строения и энергетики более сложных молекул, образованных из атомов различных элементов периодической системы. Проведя расчет энергии химической связи в молекуле Н , Гейтлер и Лондон сделали попытку вычислить энергию присоединения к ней третьего атома водорода (Н ) + (Н) —>(Нд). Расчет показал, что этот процесс невозможен. Отсюда был сделан вывод о том, что химическая связь, возникающая в молекулах за счет появления общей пары электронов, имеет предел насыщения. Двухэлектронная химическая связь получила название ковалентной. [c.241]

    К коллоидным системам относятся системы, у которых значение а лежит в пределах 1—100 нм (10 —10 см), а дисперсность—в пределах 1 —100 нм (10 —10 см ). Верхний предел дисперсности коллоидных систем обусловлен тем, что при даль- нейшем дроблении вещества в растворе уже будут находиться не агрегаты молекул, а отдельные молекулы, имеющие размер порядка 0,1 нм. Нижний предел дисперсности коллоидных систем определяется резким снижением интенсивности теплового движения частиц поперечным размером больше 100 нм. Несмотря на установленный предел в 100 нм в курсе коллоидной химии рассматриваются обычно и более грубодисперсные системы, размер частиц которых может достигать несколько микрометров,, а иногда и значительно больше. Это целесообразно потому, что свойства подобных систем, называемых микрогетерогенными, частицы которых хорошо видимы в микроскоп, во многом совпадают со свойствами коллоидных, или, иначе, ультрамикрогетерогенных [c.15]

    Так или иначе, физики и химики, исследующие жидкое состояние и, в частности, растворы, договорились (будем откровенны, не очень-то прочно) считать химическим такое взаимодействие, энергия которого не ниже 5 кДж/моль. Этот нижний предел выбран не случайно примерно такой энергией характеризуется тепловое движение молекул жидкости. Впрочем, нет никаких оснований считать, что физика и химия жидкого со- [c.23]

    Интерес к аминокислотам и пептидам обусловлен тесной внутренней связью этих веществ с белками и той Байтной ролью, которую они играют как основные компоненты почти всех биологических систем. Этот интерес усилился за последние годы, так как стало яснее, что удовлетворительное понимание химических и физических явлений в биологических системах основано на знании структурной химии белковых молекул. Исследователи многих специальных областей биологии, химии и физики принимают во все возрастающей мере участие в разре-щении вопроса о полной химической и физической картине строения белковой молекулы, в смысле идентификации и установления числа атомов, входящих в состав белка, и деталей их соединения друг с другом. В этом смысле до сих пор структура ни одной белковой молекулы еще не известна. Доказательства из различных источников привели к общепринятой картине молекулы белка, как состоящей из длинных полипептидных цепей, способных принимать более или менее вытянутые конфигурации или свернутых определенным, но до сих пор еще не установленным образом, в зависимости от химической структуры молекул и от действующих на них внешних и внутренних сил. Те же данные привели к ряду теорий и гипотез, рассматривающих силы взаимодействия между молекулами белка, от которых зависят характерные свойства как кристаллических, так и фибриллярных белков [4—6, 14, 17, 25]. Подробное обсуждение этих идей и их значения для будущего развития химии белков выходило за пределы данной статьи, в которой мы ограничимся обсуждением лишь тех результатов, которые дает [c.298]

    Исследования относятся к учению о хим. процессах. В первых работах (1916—1925) получил данные о явлениях, вызываемых прохождением электрического тока через газы, об ионизации паров металлов и солей под действием электронного удара и о механизме пробоя диэлектриков. Разработал основы тепловой теории пробоя диэлектриков, исходные положения которой были использованы им при создании (1940) теории теплового взрыва и горения газовых смесей. На основе этой теории вместе с учениками развил учение о распространении пламени, детонации, горении взрывчатых в-в и порохов. Его работы по ионизации паров металлов и солей легли в основу соврем, представлений об элементарном строении и динамике хим. превращения молекул. Изучая окисл. паров фосфора, в сотрудничестве с Ю. Б. Харитоном и 3. В. Вальтой открыл (1926—1928) предельные явления, лимитирующие хим. процесс,— критическое давление , критический размер реакционного сосуда и установил пределы добавок инертных газов к реакционным смесям, ниже которых р-ция не происходит, а выше которых идет с огромной скоростью. Те же явления обнаружил (1927—1928) в р-циях окисл. водорода, оксида углерода (II) и др. в-в. Открыл (1927) новый тип хим. процессов — разветвленные цепные р-ции, теорию которых впервые сформулировал в 1930— 1934, показав их большую распространенность. Доказал экспериментально и обосновал теоретически все наиболее важные представления теории цепных р-ций о реакционной способности свободных атомов и радикалов, [c.402]

    При обсуждении строения таких молекул, как бензол, мы убедились, что в некоторых случаях электроны могут делокализовываться, или распределяться, по нескольким ядерным центрам. Это происходит при условии, что атомные орбитали одного атома способны взаимодействовать с атомными орбиталями сразу нескольких других атомов. Как мы уже знаем из разд. 8.7, ч. 1, в графите электроны делокализуются в пределах целых атомных плоскостей. Целесообразно подойти к рассмотрению хими- [c.360]

    Однако продвигается вперед и методика точных расчетов. Еще недавно специалисты в области квантовой химии отжазывались ют точных расчетов для систем с числом электронов более двух Затем этот предел был отодвинут до 5, 10 и 20. Тот же Коулсон в 1959 г. утверждал ...похоже на то, что число электронов, близкое к 20, — это верхний предел размера молекулы, для которой практически возможен точный расчет... при помощи вычислительной техники [17, с. 168]. Но теперь те же специалисты говорят, что для них с возрастающей скоростью становятся доступными точные волновые функции все более и более сложных молекул. [c.98]

    Разработка структурных теорий твердого тела. Проблемой но мер 1 структурной химии применительно к неорганическим соединениям является разработка структурных теорий твердого тела. Эти теории уже сейчас начинают создаваться на принципиально иной основе по сравнению со структурными теориями органических соединений. Последние базируются на представлениях о молекулах как замкнутых системах с сильными локализованными межатомными связями, на представлениях о взаимном влиянии атомов, которое изменяет в некоторых — в общем незначительных — пределах энергию попарных межатомных связей. Даже квантово-механические теории строения органических молекул с их основным понятием неразличимости обобщенных электронов приходят к необходимости устанавливать ква1ггово-меха нические аналоги классическим поня- [c.98]

    На процесс разделения влияют и специфические химические взаимодействия. При таких взаимодействиях за счет перекрывания молекулярных орбиталей происходит хотя бы частичное обобществление электронов и возникают донорно-акцепторные связи. В комплексах с переносом заряда, представляющих интерес для хроматографии, в з виснмости от типа взаимодействующи.х молекул эти энергии лежат в пределах от 4 до 20 кДж/моль для водородной связи — в пределах 10—30 кДж/моль. В химии донорно-акцепторные взаимодействия щироко распространены, и поэтому [c.301]

    ИЗОТОПНЫЙ ОБМЕН, самопроизвольное перераспределение изотопов к.-л. элемента между разл. фазами в-ва, молекулами или внутри молекул. В результате И. о. выравнивается изотопный состав элементов, составляющих разл. хим. формы в-ва или фазы системы, и устанавливается равномерное распределение изотопов. Незначит. отклонения от такого распределения м. б. обусловлены термодинамич. изотопными эффектами. Кинетику И. о. характеризуют степенью обмена Р — Х1 — хоЖхоо — о). где Хо, и Лоо — конц. данного изотопа в рассматриваемой форме в-ва соотв. в начальный момент времени, в момент I и при равновесии. Скорость И. о. зависит от его механизма и может изменяться в широких пределах. И.о. использ. для изучения подвижности разл. атомов в молекулах, выяснения строения разл. соед., обогащения смеси отд. изотопами (см. Изотопов разделение), получения меченых соединений. [c.214]

    К осн. фундаментальным достижениям X. в. э. относятся открытия сольватированного электрона, ионно-молекулярных реакций орг. соед. в газовой фазе, селективного возбуждения и диссоциации онредел. хим. BH.ieii под действием лазерного излучения, низкотемпературного предела скорости хим. р-ций, многоквантовых фотохим. р-ций (см. Двухквантовые реакции), установление аависимости сечения р-дий от кинетич. энергии и энергии возбуждения взаимодействующих молекул, от их взаимной орнентации, объяснение механизмов разрушения слоя озона в верхней атмосфере. [c.653]

    Построение характерного для большинства моносахаридов прямого углеродного скелета из пяти-шести углеродных атомов не составляет проблемы для современной органической химии. Несколько сложнее, но также вполне в пределах синтетических возможностей, снабдить каждый из этих атомов функциональной группой — спиртовой, аминогруппой, карбонильной и т. д. Еш,е Бутлеров более 100 лет назад осуш,ествил синтез смеси моносахаридов с присуш,ей им бутлеровской структурой, использовав одно из простейших органических соединений —формальдегид. Загвоздка, однако, заключается в том, что большинство углеродных атомов моносахаридной молекулы асимметрично. Поэтому синтез природного моносахарида обязательно предполагает не только создание нужного углеродного скелета и необходимого набора функциональных групп, но и возможность придания всем асимметрическим центрам вполне определенной относительной и абсолютной конфигурации. А такая задача весьма трудна даже для современной высокоразвитой органической химии, если в качестве исходных соединений используются простые молекулы без элементов асимметрии или даже более сложные системы, содержаш,ие один-два асимметрических центра с нужной конфигурацией. [c.119]

    Проблема обеспечения избирательности реакции при наличии в молекуле нескольких реакционных центров — проблема региоспецифичности (от латинского regio — область) — имеет в органической химии весьма общее значение, но особенно характерна именно для химии углеводов, небольшой углеродный скелет которых до предела насыщен однотипными функциональными группами, создающими вместе с гликозидным центром неповторимый и весьма колоритный ансамбль. Как же может быть решена такая задача  [c.121]


Смотреть страницы где упоминается термин Химия за пределами молекул: [c.14]    [c.17]    [c.246]    [c.10]    [c.12]    [c.238]    [c.368]    [c.268]    [c.344]    [c.423]    [c.544]   
Органический синтез. Наука и искусство (2001) -- [ c.509 ]

Органический синтез (2001) -- [ c.509 ]




ПОИСК







© 2025 chem21.info Реклама на сайте