Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибридизация октаэдрическая

    Укажите тип гибридизации орбиталей центрального атома и его электронную конфигурацию в следующих комплексах [АиВг4]- [N 014] " [Со (СЫ)б] , если известно, что первый имеет квадратную форму, второй — тетраэдрическую и третий — октаэдрическую. [c.90]

    У элементов третьего и последующих периодов в образовании гибридных электронных облаков могут участвовать и -орбитали. Особенно важен случай хр -гибридизации, когда в образовании гибридных орбиталей участвуют одна 5-, три р- и две -орбитали, В этом случае образуются шесть равноценных гибридных орбиталей, вытянутых в направлениях к вершинам октаэдра. Октаэдрическая структура молекулы 5Рд, ионов [5 Рбр , [Ре(СМб)р- и ми 1Г 1Х других объясняется хр гЯ-гибридизацией атомных орбиталей центрального атома. [c.139]


    Аналогичная гибридизация имеет место и у переходных элементов. При этом комбинируются 3d-, 4s- и 4/ -орбиты. Особый интерес представляет s/j d-гибридизация. Полинг показал, что при этом возникают шесть эквивалентных электронных тяжей, направленных, например, вдоль положительных и отрицательных направлений осей х, у, г (октаэдрическая гибридизация). Эти гибридизации привлекались для объяснения строения комплексных соединений типа ионов Fe ( N)s или Со (ЫНз)б . Атом железа имеет внешние электроны (3df (4s) . Ион Ре + имеет строение (3d)" (4s)Представляется энергетически выгодным возбудить три электрона из З -состояния в 4р-состояние. Тогда в возникшем ионе осуществляется состояние (МУ (4s) (4р) . Два /-электрона, один 4s и три 4р дают октаэдрическую гибридизацию, приводящую к шести сильным связям, компенсирующим энергию, затраченную иа возбуждение. [c.480]

    Ионы Си + с координационным числом 6 образуют октаэдрические комплексы, например [Си(Н20)в] +. В образование связей вовлекаются одна 45-орбиталь, три 4р- и две 4 -орбита-ли. Энергетическая равноценность всех шести связей свидетельствует о /5р -гибридизации электронных орбиталей иона меди. [c.139]

    Сильные лиганды типа СЫ образуют с ионом Ре + внутри-орбитальные комплексы октаэдрического строения, что указывает на р -гибридизацию орбиталей иона Рез+. Один неспаренный электрон в комплексе [Ре(СЫ)б] ответствен за невысокий парамагнетизм этих ионов. [c.137]

    Ион Zn может проявлять также координационное число, равное 6. Комплексы [2п(Н20)б] + и [2п(МНз)б] + имеют октаэдрическое строение с хр -гибридизацией электронных орбиталей цинка. [c.138]

    Появление определенной симметрии в молекулах было уже объяснено (разд. 6.3.2) на основе метода валентных связей при образовании ковалентной связи (гибридизация). Однако как чисто электростатические, так и геометрические соотношения могут привести к определенной симметрии в координационных соединениях, если исходить из ионной модели строения молекулы. Рассмотрим, например, координационный полиэдр А +Вр, в котором центральный ион с зарядом - п окружен р однозарядными лигандами. Потенциальная энергия комплекса складывается из отдельных членов, учитывающих кулоновское взаимодействие ионных пар. Сумма отрицательных (связывающих) членов тем больше, чем меньше расстояние между ионом и лигандом. Минимальное расстояние между ионом и лигандом равно гп+г (гп —радиус центрального иона, г —радиус лиганда). Для октаэдрического комплекса с симметрией Ол [c.121]

    Для цинка (II) наиболее характерно координационное число 4, а для кадмия (II) 6, что соответствует зр - и зр -гибридизации орбита-лей. Для соединений ртути (II) примерно одинаково характерно линейное, тетраэдрическое и октаэдрическое расположение связей  [c.582]


    В октаэдрической молекуле SFe должна осуществляться 5р й 2-гибридизация. Однако расчеты интегралов перекрывания орбиталей в соединениях серы с другими элементами показывают, что в предположении гибридизации с участием Зй-орбита-лей не должно образовываться устойчивой связи. Как же можно сделать возможным участие -орбиталей в образовании связей  [c.518]

    На с. 54 на основе метода валентных связей был рассмотрен тип гибридизации орбиталей ионов Ag+, 2п +, Со +, а также пространственная структура образующихся при этом комплексных ионов — линейная для [Ag(NHз)2l , тетраэдрическая для [Zn(NHз)4] + и октаэдрическая для [Со(ЫНз)б] +. Соединения с координационным числом 4 могут, кроме того, иметь структуру плоскостного квадрата, которому отвечает iisp -гибpидизaция орбиталей центрального иона. [c.181]

    Координационному числу б соответствует гибридизация и октаэдрическое расположение лигандов. Такая координация имеет место, например, в комплексах платины(IV)  [c.599]

    Таким образом, осуществляется 5р -гибридизация атомных орбиталей Со . В ней участвуют -орбитали внешнего (четвертого) электронного слоя. Поэтому комплекс получил название внешнеорбитального . В этом случае в электронной оболочке Со " есть неспаренные электроны, что обусловливает парамагнитные свойства комплекса. Комплексный ион имеет октаэдрическое строение. [c.89]

    Поэтому шесть электронов попарно занимают оставшиеся < й(-орбитали, вследствие чего неспаренных электронов больше не остается, что и обусловливает диамагнетизм системы. Кроме того, теория показывает, что возможная здесь гибридизация типа (1 р обладает октаэдрической симметрией, что полностью подтверждается исследованиями структуры [Fe( N)в] . Однако эти представления недостаточны для того, чтобы объяснить все свойства комплексов. На основе представлений Полинга, например, невозможно правильное истолкование спектров большинства комплексов металлов. [c.128]

    Соединения с координационным числом 6 имеют октаэдрическую структуру. Для нее характерна / 5р -гибридизация, в которой могут участвовать как -орбитали уровня п—1, так и уровня п. В первом случае гибридизация называется внутриорбитальной и выражается формулой (п— )с1 п8пр , а во втором — внешнеорбитальной пзпр пё . Критерием для определения типа гибридизации могут служить опытные данные о магнитных свойствах образуемых комплексов. Внутриорбитальные комплексы диамагнитны или содержат 1—2 неспаренных электрона и поэтому называются низкоспиновыми, а внешнеорбитальные — парамагнитны, содержат 3—5 неспаренных электронов и относятся к высокоспиновым. [c.181]

    В образовании ст-связей комплексообразователь — лиганд со стороны центрального атома принимают участие вакантные (и—l)rf -AO, поскольку только они (но не d = AO) энергетически близки к ns-, пр-, и nd-AO и могут с ними гибридизоваться. В зависимости от силы поля лигандов и числа (п— 5 -элект-ронов комплексообразователя для октаэдрических частиц возможны различные типы гибридизации орбиталей центрального атома. [c.188]

    Более тяжелые элементы пятой группы могут благодаря наличию свободных -орбиталей образовывать пять и шесть связей. Состояние spM-гибридизации соответствует тригонально-бипирамидальному окружению центрального атома (PFs, Sb ls), а состояние sp d -гибридизации — октаэдрическому окружению (PFe , Sb Ie ). [c.529]

    Октаэдрическое строение этого ионя (см. рис. 49, д) определяется г яр -гибридизацией орбиталей хрома. Октаэдрические комплексы образуются также при взаимодействии иона с фторид- и ги/ >о-кгид-ионами  [c.98]

    Поскольку при одинаковых лигандах образующиеся ст-связи равноценны, то образование комплексной частицы сопровождается гибридизацией акцепторных орбиталей комплексообразователя. При координационном числе 4 чаще всего реализуется р -гибридизация, что соответствует тетраэдрической координации лигандов, или 5р -гибридизация, отвечающая плоско-квадратной координации лигандов. При координационном числе 6 осуществляется октаэдрическая координация лигандов, которая определяется 1 5р - или 5р -гибрндизацией. [c.209]

    Амплитуда колебаний атомных ядер во много раз (пропорцжо-нально квадратному корню из отнощения масс) меньше, чем электронов. Поэтому атомные ядра, принадлежащие данной молекуле, вместе со всеми своими электронами, кроме валентных (т. е. атомные остовы), связанные направленными межатомными связями, представляют собой довольно резко локализованный остов молекулы. Понятно, что форма молекулы зависит от строения остова, которое в свою очередь определяется характером межатомных связей, их направлением. Но, как мы знаем, направление межатомных связей задается той или иной комбинацией атомных орбита-лей, т. е. пространственной конфигурацией соответствующих электронных волновых функций, связанной с симметрией поля сил между атомным ядром и электронами, Так, в результате коаксиальной -гибридизации трехатомные молекулы галогенидов элементов И группы в газообразном состоянии имеют остов линейной формы. Четырехатомные молекулы, например ВРз, благодаря 5р2-гибридизации приобретают остов, в котором все соединяющие атомные остовы три связи располагаются в одной плоскости под углом 120° друг к другу. Тетраэдрическое строение остова пятиатомных молекул типа СН4 и ССЦ обусловлено р -гибридизацией к такой же конфигурации остова молекул приводит х -гибриди-зация.. Существуют также октаэдрическая ( р -гибридизация, плоская квадратная 5/7 -гибридизация, тригональная бипирами-дальная ( 5,о -гибридизация, каадратная пирамидальная 5р -гиб-ридизация и др. [c.84]


    Один из первых значительных успехов в объяснении существования октаэдрических комплексов был достигнут, когда Полинг в 1931 г. показал, что набор из шести 5-, р- и -орбиталей может быть гибридизован аналогично тому, как осуществляется зр - или 5р"-гибридизация при этом образуются шесть эквивалентных орбиталей, направленных к вершинам октаэдра. Для такой гибридизации могут использоваться валентные 5-орбиталь и три р-орбитали, а также 2 2- и ,2-орбитали, расположенные (по энергии) непосредственно под или над валентными 5- и р-орбиталями центрального атома. Указанные -орбитали выбраны потому, что их области максимальной плотности ориентированы вдоль шести осевых направлений октаэдра, подобно трем р-орбиталям. Возникающие в результате шесть октаэдрически ориентированных орбиталей называются "хр - или sp" "-гибридными орбиталями в зависимости от того, меньше на единицу главное квантовое число -орбиталей, чем у и р-орбиталей, или же совпадает с их главным квантовым числом. [c.225]

    Теория валентных связей не гюзволяет делать количественных предсказаний об энергетических уровнях комплексов, но все же дает возможность понять магнитные свойства октаэдрических комплексов. Полинг предположил-, что возможны комплексы двух типов внешнеорбитальные, в которых осуществляется гибридизация sp ", и внутриорбитальные с гибридизацией " р (рис. 20-9). Во внутриорбитальных комплексах для размещения остаюпдахся у иона металла -электронов имеется ограниченное число J-орбиталей. Эти электроны могут размещаться только на ,- и [c.225]

    Теперь допустим, что шесть лигандов, каждый с неподеленной электронной парой, должны образовать шесть ковалентных связей с ионом кобальта, который использует для этого свои октаэдрически ориентированные ги-бридизованные орбитали. Если в гибридизации участвуют 4х-, 4р- [c.226]

    С) к SnF (т. пл. 400°С) и PbF (т. пл. 600°С) температура плавления и кипения резко возрастает. Это отражает переход от молекулярной решетки к полимерной. Кристаллы SnF и PbFi имеют слоистую решетку, состояш,ую из октаэдрических структурных единиц 3Fe (рис. 215). Таким образом, в PbF атом РЬ находится в состоянии sp i -гибридизации, а потому PbF в отличие от остальных галидов РЬ (IV) устойчив. [c.489]

    В этом случае в гибридизации участвуют не внешние Ай-орбитали, а внутренние З -орбитали и комплекс [Со(СЫ)б] называется внутреннеорбитальным . Комплексный ион имеет октаэдрическое строение. [c.89]

    В большинстве соединений атомы алюминия находятся в состоя-Н1Н1 5/ -гибридизации с октаэдрическим расположением связей, например Маз(А1Рс), МЗз[А1 (ОН)о1, [А1(ОН2)и]С1з и др. Для алюминия характерны координационные числа 4 (х/ -гибридизация) и 6 (5,о -гибридизация). [c.273]

    Рассматриваемые элементы отличаются от углерода (и отчасти от кремния) тем, что образование многих их химических соединений описывает 1р (/ -гибридизация. В частности, для этих элементов характерны октаэдрические комплексы (в отличие от углерода для кремния известен только 81Рб1 ). Примерами таких комплексов являются 1Се(ОМ)б1 , (5п(ОН)б) . (8пС1б1 , (РЬС1б . [c.386]

    Среди различных подходов к объяснению образования комплексного иона наиболее общий дает теория молекулярных орбиталей. Впервые она была применена к комплексным ионам Ван-Флском Ч В методе используются те же орбитали центрального атома, что и в методе Полинга, но, кроме того, и орбитали N координирующихся лигандов М — число лигандов), направленных к центральному атому. Таким образом, для построения молекулярных орбиталей при наличии шести лигандов пригодными будут пятнадцать атомных орбиталей. При октаэдрическом расположении лигандов это будут три вырожденные несвязывающие -орбитали (1 , йу ) каждая с четырьмя долями, направленными между лигандами, шесть связывающих, происходящих от гибридизации, и шесть соответствующих им разрыхляющих орбиталей. По аналогии с методом Полинга, конфигурацию молекулярных орбиталей можно представить следующим образом [жирные линии разделяют орбитали с различной энергией (см. рис. 7-4), а отдельные клетки изображают молекулярные орбитали]  [c.265]

    Рассмотрим более подробно кинетические свойства комплексов, образованных ионами переходных металлов. Если дентатность лиганда невелика, то внешнеорбитальные комплексы этих ионов лабильны. Использование внешних -ор-биталей для гибридизации характерно для конфигураций с1 (Си +) и (Ак+, Си+, 2п +, Сс1 +, Нд2+, Оа +, 1п +, Т1 +) и для высокоспиновых комплексов ионов с конфигурациями от (а у октаэдрических комплексов от (I ) до с " (Mп +, Ре + и Ре +, Со2+,, N 2+ и др.). [c.33]

    Чтобы объяснить октаэдрическую структуру SFg (см. рис. 71), надо принять, что атом серы участвует в соединении не в основном состоянии KL2s 3p 3py Зр., а в возбужденном KL2s3p 2d . Затем допустить, что в поле шести атомов фтора происходит -гибридизация орбиталей шести валентных электронов, и выбрать коэффициенты в гибридной функции так, чтобы шесть осей гибридных 5р -орбиталей были направлены к вершинам октаэдра. Так теория направленных валентностей в методе валентных связей объясняет структуру простейших молекул и их производных. [c.186]

    При числе /-электронов, равном 4- 8, электроны появляются на З / -подуровне центрального атома в зависимости от силы поля, а именно, в слабом поле, начиная с конфигурации ldl3d], и в сильном поле, начиная с конфигурации 3d id j. Поэтому типы гибридизации будут различными для слабого и сильного октаэдрического поля лигандов (табл. 11.1). Так, для центрального атома Ре ( / -конфигурация) в слабом октаэдрическом поле каждая Ъd и 3i/ -A0 [c.188]

    Пример 3. Составьте энергетическую диаграмму образования связей в октаэдрическом комплексе [Ре(С204)з] (поле лигандов— слабое) и укажите тип гибридизации орбиталей центрального атома. [c.189]


Смотреть страницы где упоминается термин Гибридизация октаэдрическая: [c.227]    [c.219]    [c.199]    [c.183]    [c.229]    [c.51]    [c.178]    [c.178]    [c.232]    [c.339]    [c.116]    [c.433]    [c.249]    [c.107]    [c.352]    [c.381]    [c.206]    [c.65]    [c.115]   
Современная неорганическая химия Часть 3 (1969) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Гибридизация



© 2024 chem21.info Реклама на сайте