Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связи химические двухэлектронные

    Метод валентных связей (локализованных электронных пар) строится на положении о том, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар. Таким образом, в представлении теории валент-. ных связей химическая связь локализована между двумя атомами, т. е. она двухцентровая и двухэлектронная. [c.63]

    Теория валентных связей. Теория ВС, созданная в основном трудами В. Гейтлера и Ф. Лондона, исходит из того, что единичную химическую связь образуют два электрона с противоположными спинами, принадлежащие двум атомам. При этом происходит перекрывание волновых функций электронов, между атомами возникает зона со значительной электронной плотностью, что приводит к уменьшению потенциальной энергии системы, т. е. к образованию связи. Образованная химическая связь двухцентровая, двухэлектронная, обозначается в структурных формулах соединений черточкой и называется ковалентной. [c.230]


    В методе валентных связей химическая связь рассматривается как двухэлектронная и двухцентровая, т.е. пара электронов, образующих связь, локализована в пространстве между двумя атомами и находится в их общем пользовании. Возможны два механизма образования общей электронной пары. Первый называется обменным и заключается в спаривании двух электронов, принадлежащих разным атомам и имеющим противоположные спины. Его можно выразить следующей схемой  [c.47]

Рис. 20. Виды химических двухэлектронных связей Рис. 20. <a href="/info/1079979">Виды химических</a> двухэлектронных связей
    Однако нельзя забывать и то, что эта теория является все же приближенной и как таковая имеет серьезные недостатки. Основное положение, что химические связи являются двухэлектронными для таких сложных объектов как комплексные соединения, конечно, не всегда соответствует действительности. Кроме того, теория ва- [c.99]

    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]


    Таким образом, в молекуле водорода оба электрона находятся в силовом электрическом поле, образованном двумя положительно заряженными центрами, которыми являются ядра водородных атомов. Поэтому химическая связь в молекуле водорода является двухэлектронной двухцентровой связью. [c.44]

    Химические процессы, в которых образование и разрушение двухэлектронных связей идет без образования и разрыва электронных пар, называются гетеролитическими. [c.15]

    Представление о валентности как о числе двухцентровых и двухэлектронных связей применимо в тех случаях, когда можно представить, что химическая связь локализована между двумя атомами молекулы. [c.79]

    Таким образом, существует целый ряд видов связи от неполярной до полностью ионной. Направление и величина полярности двухэлектронной связи имеют очень большое значение. При химических реакциях связи часто разрываются таким образом, что электронная пара остается у того атома, к которому она была ближе, т. е. первоначальная полярность усиливается в промежуточном реакционном комплексе до ионного состояния. С помощью шкалы электроотрицательности атомов (Полинг, Мулликен) можно определить направление и приблизительно оценить величину полярности (дипольный момент) связи. Чем больше разность электроотрицательности двух связанных атомов, тем больше дипольный момент связи, но зависимость между этими величинами не является линейной. Атом с меньшей электроотрицательностью образует положительный конец диполя. Ниже приводятся электроотрицательности некоторых атомов, наиболее важных для органической химии  [c.52]

    Как уже указывалось в 2 гл. I, в зависимости от того, по какому механизму происходит перестройка (разрыв одних и образование других) химических связей в элементарном акте, различают гомолитиче-ские процессы, идущие с разрывом одних электронных пар и образованием других и гетеролитические реакции, в ходе которых все электронные пары сохраняются. Активированный комплекс одного и того же типа может реализоваться в случае как гомолитического, так и гетеролитического процесса. Например, реакции (1П.ЗЗ) и (П1.36) идут через линейный трехчленный активированный комплекс по типу (111.35). Однако первый процесс является гетеролитическим — связь С — I разрывается с переходом пары электрона на атом I, а новая связь С—О завязывается за счет неподеленной пары электронов 0Н . Второй процесс, наоборот, является гемолитическим — двухэлектронная связь И—С1 образуется за счет неспаренного электрона атома С1 и одного из 15-электронов атома Н, участвующего в образовании связи С—Н. Электронная пара, образующая эту связь, при этом разрывается и второй электрон остается в виде неспаренного электрона на атоме С свободного метила. [c.97]

    Химическая связь может осуществляться при помощи одного (Н ) или двух электронов (Н2), охватывать два (Н , Нг) и большее число атомов (СН , ВеНг, ХеРг). Это говорит о том, что классическое представление о валентности как числе двухцентровых двухэлектронных связей не может быть всеохватывающим. Если атом окружен п атомами, это не означает, что он образует п двухцентровых связей. [c.178]

    Метод валентных связей дает теоретическое обоснование широко применяемым химиками структурным формулам. Большое достоинство метода заключается в его наглядности. Однако представление о локализованных (двухцентровых, двухэлектронных) химических связях оказывается слишком узким для объяснения многих экспериментальных фактов. В частности, метод валентных связей несостоятелен для описания молекул с нечетным числом электронов, большой группы молекул с дефицитом электронов, свойств соединений, синтезированных в последнее время. Большие трудности испытывает этот метод при объяснении магнитных свойств соединений, их окраски, энергетических характеристик молекул и многих других важных экспериментальных фактов. [c.83]

    Прежде чем перейти к двухэлектронным системам, рассмотрим еще один из важнейших подходов к решению проблемы химической связи, который, впрочем, не касается общего энергетического баланса (разд. 6.2.2). [c.81]

    Метод ВС основан на предположении, что химическая связь обеспечивается двумя электронами, движущимися в ограниченном участке электростатического поля двух ядер. Это предположение получило название концепции двухэлектронных локализованных связей. Эксперименты показывают, что многие химические связи локализованы, т. е. электронная плотность сосредоточена в межатомном пространстве и поэтому такая химическая связь почти независима от других связей. [c.101]

    Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам. Комбинации таких двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем. [c.103]


    В отдельных молекулах химическая связь между атомами близкими по своей природе (с близкой электроотрицательностью) носит, в основном, двухэлектронный и двухцентровый характер. Структура и свойства молекул с такой ковалентной связью в большинстве одинаково успешно объясняются и методом ВС, и методом МО. Свойства молекул и кристаллов с делокализованными химическими связями проще и правильнее объяснить с помощью метода МО. Для упрощения подхода к объяснению свойств молекул обычно пользуются приближением двухцентровой (локализованной) химической связи, если это не ведет к принципиальной ошибке в оценке свойств. [c.117]

    Такой тетраэдрической направленности всех четырех одинаковых (по прочности и длине) ковалентных сг-связей атома углерода с другими атомами отвечает sp -гибридизация его валентных орбиталей (см. разд. 4.5.6 и рис. 29.2). Данная геометрия следует и из концепции отталкивания электронных пар валентной оболочки углерода, когда четыре связывающих электронные пары стремятся удалиться, как можно дальше друг от друга (см. разд. 4.5.5). Химическая связь в таких соединениях углерода в значительной мере локализована между парами атомов и двухэлектронна. В этой связи предполагается, что коллективные свойства молекулы, т. е. свойства, определяемые движением сразу всех электронов, будут аддитивными. Экспериментальные данные во многих случаях подтверждают это. В молекулах с тетраэдрическими связями атомов углерода длины химических связей и их прочность для одной и гой же пары атомов приблизительно постоянны. [c.552]

    Гемолитическая химическая реакция сопровождается разрывом одной (или нескольких) двухэлектронной связи с образованием частиц с нечетным числом электронов (атомов, радикалов), например  [c.8]

    Подобно обычным химическим реакциям, каталитические реакции могут протекать по двум основным механизмам гемолитическому и гетеролитическому. Реакции, сопровождающиеся разрывом некоторых из существующих и образованием новых электронных пар, называются гомолитическими. Они протекают с образованием (участием) незаряженных частиц — свободных радикалов, обладающих свободными валентностями атомов. Если разрыв двухэлектронной связи идет без раз- [c.286]

    Как уже отмечалось, при образовании двухэлектронной химической связи происходит взаимная компенсация спинов (магнитных спиновых моментов каждой пары электронов. Этому соответствует резкое снижение собственного магнитного момента молекулы по сравнению с составляющими ее атомами, в которых находятся неспаренные электроны. Так, например, у атома водорода магнитный момент л=1р,в (магнетон Бора). При образовании молекулы водорода Нг магнитные спиновые моменты двух атомов взаимно компенсируются, так что (.1 = 0, [c.198]

    Дублет электронов не исчерпывает возможного электронного механизма химической связи. Существование молекулярного иона водорода Н свидетельствует о том, что одного электрона вполне достаточно, чтобы образовать прочное соединение. С течением времени выявилась ограниченность концепции двухцентровой двухэлектронной связи и было высказано предположение о существовании многоцентровых орбит, охватывающих большую группу атомов. Методами масс-спектроскопии обнаружено существование иона Н , возникающего по реакции [c.39]

    Сразу же отметим, что требование обязательного спаривания электронов с противоположным спином и сведение всех химических связей только к двухцентровым двухэлектронным связям оправдывается только для ограниченного круга соединений. [c.176]

    Молекулы с дефицитом электронов. В предыдущих разделах мы познакомились с применением метода МО к простейшим системам — двухатомным молекулам. Орбитали, которые охватывают только два ядра, называются двухцентровыми. Одним из примеров многоцентровых молекулярных орбиталей являются молекулы, в которых число валентных электронов меньше, чем 2 п — 1), где п — число атомов в молекуле, — так называемые электрондефицитные соединения. Такое условие возникает потому, что минимальное количество химических связей, необходимое для объединения п атомов, равно п— 1, а если каждая связь является двухэлектронной, то требуется 2 п — 1) электронов. Наиболее известный представитель этого класса — молекула диборана BjHe. Она состоит из восьми атомов и в ней должно быть по крайней мере семь связей, т. е. 14 электронов. Подсчет показывает, что на самом деле имеется только 12 валентных электронов. [c.195]

    Согласно простейшим представлениям о химической связи, устойчивость молекулы определяется существованием в ней отдельных двухэлектронных связей, соединяюпдих между собой пары атомов. Для подавляющего большинства молекул удается подобрать набор стандартных значений энергий связей, который позволяет воспроизводить экспериментальные теплоты образования молекул с точностью до 5-10 кДж. Однако для некоторых молекул результаты подобных расчетов значительно отклоняются от экспериментальных данных. Подлинная устойчивость таких молекул оказывается намного больше или, наоборот, меньше, чем предсказывают расчеты, основанные на представлениях простой теории локализованных связей. Появление подобных расхождений указывает, что в рассматриваемом случае простая модель локализованных связей неприменима. Молекулы с напряженной структурой могут оказаться менее устойчивыми, чем предсказывают тгрмодина. шческие расчеты, а молекулы с делокализацией электронов - более устойчивыми. [c.36]

    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    Метод валентных связей. Представления об образовании молекулы водорода, развитые Гейтлером и Лондоном, были распространены и на более сложные молекулы. На этой основе возникла теория образования химических связей, которая получила название метода валентных связей. Этот метод основан на представлении о том, что атомы в молекуле удерживаются посредством одной или нескольких электронных пар, причем эти связи тем прочнее, чем в большей степени перекрываются электронные облака взаимодействуюших атомов. Обычно большая степень перекрывания электронных облаков наблюдается на прямой, соединяющей центры атомов. Комбинации двухэлектронных двухцентровых связей, которые отражают электронную структуру молекулы, называют валентными схема.ии. [c.47]

    Электронная теория катализа допускает существование разных видов связи хемосорбированных частиц из газа на поверхности полупроводника слабой одноэлектронной связи и двух видов прочной двухэлектронной связи — акцепторной и донорной, которые в свою очередь могут иметь ковалентный или ионный характер в зависимости от природы адсорбируемой частицы. Предположим, что адсорбируемая частица является одновалентным атомом электроположительным атомом А (типа Na) или электроотрицательным атомом В (типа С1), а катализатор — полупроводниковый ионный кристалл состава MR (типа Na l), который имеет в узлах решетки и на поверхности кристалла частицы М+, R , М и R. При этом будут наблюдаться следующие шесть случаев химической связи, показанные на схеме (в двух случаях — 2 и 5 — связь не образуется). [c.455]

    Все три рассмотренных типа связи — ковалентная, ионная и донорно-акцепторная — являются двухэлектронными, в них атомы связаны при помощи пары электронов. Помимо химических соединений, в которых атомы связаны двухэлектронными связями, известны вполне устойчивые соединения, у которых на одну связь приходится меньше, чем по два электрона — так называемые соединения с дефицитными структурами. Примером такого рода соединений являются бороводороды. Так, н молекуле В2Н0 шесть валентных электронов двух атомов В и шесть валентных электронов шести атомов Н обеспечивают соединение 8 атомов, т. е. образование по крайней мере 7 связей. [c.13]

    Кроме разложения по базису в квантовой химии часто используется и другой способ построения приближенной волновой функции, который для определенного типа молекулярных структур соответствует интуитивным представлениям о химических связях в молекуле. В этом способе волновая функция молекулы записьшается (приближенно) с помощью двухэлектронных функций, в качестве которых естественно брать антисимметричные 0(лс1, х ) = —Щх , 1). Эти функции принято называть спин-геминапями (или геминтями). Наиболее простое выражение многозлектронной волновой функции получают с помощью гемина-лей в случае синглетного состояния системы, где число электронов четно, N = 1п. Ъ этом случае можно использовать синглетные спин-геминали [c.70]

    Представление о валентности как числе двухцентровых и двухэлектронных связей применимо в тех случаях, когда можно представить, что химическая связь локализована между двумя атомами молекулы. Так, в молекуле СН электронная плотность равномерно распределена относительно всех четырех атомов водорода, и каждый из них находится в равноценных условиях. Поэтому можно считать, что из восьми электронов молекулы н каждый из атомов водорода приходится по одной электронной паре, т. е. каждый из атомов водорода одновалентеа и связан с атомами углерода отдельной независимой парой электронов, а атом углерода четырехвалентен. В молекуле четыре равноценные связи С—Н, что схематически изображают структурной формулой  [c.178]

    Так, при взаимодействии с фтором нелокализованная л-связь графита разрывается, и возникают двухэлектронные сг-связи С—Р. В пределе образуется фторид графита состава СР (рис. 205). При этом углерод переходит из ар - в зр -гибридное состояние. Поскольку во фториде графита все связи локализованные, он диэлектрик. Фторид графита — бесцветное, прозрачйое, химически инертное веш,ество. Не реагирует даже с концентрированными кислотами и щелочами. При окислении фтором превращается в Ср4. Алмаз окисляется фтором при нагревании непосредственно до [c.449]

    В основе данного метода лежат представления о том, что во многих соединениях химическая связь приближенно может считаться двухцентровой и двухэлектронной. Поэтому электронная оболочка каждого атома представляется состоящей из нескольких электронных пар. Часть этих электронных пар является неподеленными, т. е. принадлежащими только одному атому, а другая часть — поделенными, т. е. принадлежащими двум атомам. Далее считается, что электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга. Таким образом предпо-.пагается, что электронные пары ведут себя так, как если бы они только взаимно отталкивались. Считается, что неподеленные электронные пары отталкиваются друг от друга сильнее, чем они отталкиваются от поделенных электронных пар. Наиболее слабое отталкивание приписывается отталкиванию между собой поделенных электронных пар. Если каждой электронной паре мысленно приписать предпочтительное нахождение в некоторой точке пространства, то расположение пар можно изобразить в виде вершин многогранника, который получается при соединении всех пар прямыми линиями. Например, если отталкиваются всего 2 электронные пары атома Э, то они будут располагаться под углом 180° друг [c.134]

    Механизм образования химической связи удобнее всего рассмотреть на примере образования молекулы водорода из атомов. Формула электронной конфигурации ато1 водорода — 15, т. е. у него имеется только один неспарен ный электрон. В соответствии с законами квантовой механики атом водорода, содержащий неспаренный электрон, находится в неустойчивом состоянии, поскольку обладает избытком потенциальной энергии. Такой атом будет притягивать к себе другой атом водорода при условии, если спин его электрона имеет противоположное направление. Взаимное притяжение атомов приводит к тому, что их атомные орбитали перекроются, при этом оба электрона станут в равной мере принадлежать обоим атомам, т. е. образуется пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Электронное облако, образуемое этой парой электронов, охватывает, связывает воедино ядра обоих взаимодействующих атомов. Такая связывающая два одинаковых атома двухэлектронная связь называется ковалентной. [c.69]


Смотреть страницы где упоминается термин Связи химические двухэлектронные: [c.195]    [c.78]    [c.67]    [c.195]    [c.228]    [c.66]    [c.41]    [c.44]    [c.176]   
Современная неорганическая химия Часть 3 (1969) -- [ c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте