Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация аллелей

    Самое существенное следствие всех этих данных состоит в том, что классический ген, который рассматривали как неделимую единицу в отношении таких функций, как мутация и рекомбинация, оказался более сложным, чем предполагали ранее. Вследствие этого концепцию аллелизма определить теперь гораздо труднее, чем раньше. Вряд ли различные аллели можно рассматривать как результат изменения одной и [c.268]

    Законная генетическая рекомбинация приводит к возникновению новых комбинаций специфических аллелей (различной формы одного и того же гена, обусловливающие различные варианты развития одного и того же признака-группы [c.230]


    Для построения подробных генетических карт некоторых эукариотических организмов, таких как мышь, кукуруза, плодовая мушка, нематоды и дрожжи, необходимо идентифицировать целый ряд генов, каждый из которых представлен по крайней мере двумя аллелями. Затем нужно провести скрещивания и подсчитать частоту рекомбинаций у большого числа потомков. Результаты отражают степень сцепления между [c.446]

    Другое важное достижение генетики — установление того, что наряду с выраженным постоянством генов каждому организму свойственна определенная частота спонтанных мутаций. Новые гены или аллели возникают непрерывно и служат материалом для рекомбинаций. [c.377]

    При этих попытках пришлось столкнуться с одним специфическим затруднением как правило, мутанты обладают пониженной жизнеспособностью, которая часто связана с неблагоприятными изменениями в структуре хромосом. Нередко и более тонкие изменения, предположительно зависящие от истинных генных мутаций, также обладают отрицательным эффектом и дают начало мутантам, не имеющим хозяйственной ценности. Все же среди экспериментально полученных или естественно возникших мутантов можно выбрать небольшое число мутантов, не связанных с неблагоприятными изменениями и имеющих нормальную или повышенную жизнеспособность и урожайность. Может также случиться, что мутации, оказавшиеся неблагоприятными в исходной генотипической среде, дают более благоприятные результаты после скрещивания и рекомбинаций. В настоящее время соверщенно ясно, что новые гены или аллели, возникающие под действием излучения, относятся в основном к тому же типу, что и мутации, спонтанно возникающие в природе. Это значит, что наследственную изменчивость можно значительно усилить под действием излучения и других сходных факторов (см. стр. 210). [c.403]

    Внутривидовое видообразование предполагает участие нескольких факторов, однако во всех случаях непременным условием является прекращение обмена генами между популяциями. В результате каждая субпопуляция становится генетически изолированной. Изменения частоты аллелей и генотипов в отдельных популяциях, обусловленное действием естественного отбора на диапазон фенотипов, создавшихся в результате мутаций и половой рекомбинации, ведет к образованию рас и подвидов. Если генетическая изоляция сохраняется в течение длительного периода времени, а затем подвиды встречаются вновь в той же самой области, то они либо снова скрещиваются, либо скрещивание между ними оказывается невозможным. В случае успешного скрещивания их все еще можно считать принадлежащими к одному виду. Невозможность скрещивания означает, что произошло видообразование, и прежние подвиды следует теперь рассматривать как самостоятельные виды. Полагают, что именно та- [c.333]


    Аллели, определяющие длину крыльев и цвет глаз, показаны вверху в двух женских (X) хромосомах р1. В результате кроссинговера между этими аллелями получаются показанные вверху рекомбинантные генотипы. Из 106 муху 35 (18 + 17) произошли рекомбинации таким образом, частота рекомбинаций равна 35/106, или приблизительно 30%. [c.361]

    Из этого выражения, впервые выведенного Холдейном в 1917 г., следует, что для больших значений (для очень отдаленных друг от друга генов) р у приближается к предельной величине 0,5 (фиг. 144). Иными словами, если между двумя генами за одно скрещивание происходит большое число перекрестов, то половина скрещиваний завершается четным, а половина — нечетным числом перекрестов. Для малых значений й у, характерных для очень тесно сцепленных локусов, уравнение (XII. 1) упрощается до р у = у. Это значит, что при среднем числе перекрестов, много меньшем единицы, почти все возникшие между двумя генами перекресты являются единичными обменами. И наконец, если два гена являются аллельными й у = 0), то р у = О, т. е. между двумя аллелями, занимающими в точности одно и то же место в хромосоме фага, не может возникнуть рекомбинации. [c.293]

    Полиморфизм белков — это существование одного и того же белка в нескольких молекулярных формах, отличающихся по первичной структуре, физико-химическим свойствам и проявлениям биологической активности. Причинами полиморфизма белков являются рекомбинации и мутации генов. Изобелки — это множественные молекулярные формы белка, обнаруживаемые в пределах организмов одного биологического вида как результат наличия более чем одного структурного гена в генофонде вида. Множественные гены могут быть представлены как множественные аллели или как множественные генные локусы. [c.34]

    Присутствие рекомбинантов +mi в двух тяжелых максимумах, в которых содержится родительская и полуконсервативно реплицированная родительская ДНК дикого типа, свидетельствует о том, что эти рекомбинанты получили часть метки от родительского фага. Это бесспорно доказывает, что в рекомбинантные фаги попадает какая-то часть исходной родительской ДНК. Отсюда можно заключить, что рекомбинация происходит за счет разрывов родительских хромосом с последующим восстановлением генетически полноценных хромосом из образовавшихся фрагментов. То обстоятельство, что комплементарный рекомбинант ст1 практически не содержит тяжелого изотопа (хотя и содержит аллель унаследованный от родителя +/nt+), легко объяснить положением генов с и mi на генетической карте фага X. На фиг. 148 видно, что ген mi располагается почти на самом конце хромосомы фага X и, значит, при единичном обмене рекомбинантная хромосома получает очень небольшой фрагмент тяжелой ДНК дикого типа mi . (Это объяснение, разумеется, предполагает, что генетическая карта фага X в отличие от карты Т-четных фагов имеет конец, а не замкнута в кольцо.) [c.301]

    У одного из мутантов кукурузы хромосома, несущая аллели С и wx, получила вздутие на одном конце и протяженную транслокацию участка другой хромосомы-на другом конце. В гетерозиготе с нормальной хромосомой, несущей аллели с и рекомбинация между генетическими маркерами всегда связана с образованием нового типа хромосом. Именно это должно происходить при физическом обмене участками хромосом. [c.16]

    В отсутствие рекомбинации генетический материал каждой хромосомы был бы фиксирован в ее аллелях. Единственным источником изменчивости в этом случае служили бы мутации. Протяженность мишени для мутационных повреждений увеличилась бы от одного гена до целой хромосомы. Накопление вредных изменений в отдельной хромосоме приводило бы к ее элиминации вместе с присутствующими в ней полезными мутациями. Однако рекомбинация существует, в результате чего в хромосомах происходит перераспределение генов, полезные мутации отделяются от вредных и проверяются в новых сочетаниях. Таким образом, генетическая рекомбинация способствует спасению и распространению полезных и элиминации вредных аллелей. С эволюционной точки зрения хромосома-это непостоянная структура, образуемая временно связанными определенными аллелями. Такое непостоянство обусловлено рекомбинацией. [c.443]

    Каждая V—I- (или V—В—1) рекомбинация происходит только один раз. В данном лимфоците в результате перестройки соответствующего типа образуются один ген легкой и один ген тяжелой цепей. Поскольку в таком событии участвуют гены только одной из гомологичных хромосом, другой аллель в этой клетке не экспрессируется. Это явление получило название аллельного исключения. [c.511]

    Менделевский закон независимого распределения тоже можно объяснить особенностями перемещения хромосом во время мейоза. При образовании гамет распределение между ними аллелей из данной пары гомологичных хромосом происходит совершенно независимо от распределения аллелей из других пар (рис. 24.7). Именно случайное расположение гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее расхождение в анафазе I ведет к разнообразию рекомбинаций аллелей в гаметах. Число возможных сочетаний аллелей в мужсыгх или женских гаметах можно определить по общей формуле 2", где п — гаплоидное число хромосом. У человека и = 23, а возможное число различных сочетаний составляет 223 = 8 338 608. [c.190]


    Фазеолины Группа тесно сцепленных генов, наследуемых в блоке как единый ген аллели кодоминантны гены сцеплены с генами белков группы В. Рекомбинация 33 % [23] [c.58]

    Отметим несколько важных моментов, касающихся генетического сцепления и картирования генов. Во-первых, чтобы можно было оценить частоту новых генетических комбинаций (рекомбинантов), один из родителей должен быть гетерозиготен как минимум по двум локу-сам АВ/аЬ или АЬ/аВ). Во-вторых, дигетерози-готные генотипы должны существовать в двух конфигурациях (фазах). Если два сцепленных гена на каждой из хромосом представлены одним типом аллелей (т. е. оба доминантные, АВ, или оба рецессивные, аЬ), то такую конфигурацию называют фазой сцепления (г г/с-фазой). Если же два сцепленных гена на каждой хромосоме представлены разными типами аллелей (т. е. один доминантный, а другой рецессивный, аВ или АЬ), то конфигурацию называют фазой отталкивания (/и/)анс-фазой). В-третьих, рекомбинация между двумя генами происходит независимо от их фазы. С точки зрения генетики рекомбинация между генами, находящимися в дигомозиготном состоянии (т. е. АЬ/АЬ или АВ/АВ), не приводит к появлению новой генетической комбинации, и поэтому, даже если подобная рекомбинация происходит, ее невозможно обнаружить. В-четвертых, частота рекомбинации 0% означает полное сцепление, а 50% - что гены расположены либо на разных хромосомах, либо на одной хромосоме, но удалены друг от друга слищком далеко для выявления сцепления. Для рещения проблемы картирования двух сильно удаленных генов, расположенных на одной хромосоме, необходимо картировать гены, лежащие между ними, что позволит определить, образуют ли все они одну группу сцепления. [c.446]

    Кроме метода, в котором определяется частота рекомбинаций между двумя локусами на основании прямого подсчета рекомбинантньгх и нерекомбинантных хромосом, необходимо было разработать более обший, непрямой метод, который 1) мог бы строго различать независимое распределение и сцепление 2) не обязательно опирался бы на данные о фазе аллелей дигетерозиготньк родителей 3) мог суммировать информацию, полученную от большого количества различных семей 4) позволял оценить рекомбинационный индекс в том случае, когда сцепление обнаружено. Такой метод, широко используюшийся в настояшее время, бьш создан в 1955 г. Мортоном. [c.447]

    Кроссинговер ( rossing-over) Взаимный обмен участками гомологичных хромосом, основанный на разры-ве-соединении хроматид и приводящий к новой комбинации аллелей. Называется также рекомбинацией. [c.552]

    Время от времени у всех организмов происходит спонтанное удвоение генов хромосома, содержащая одну копию гена G, в результате опшбки в репликации ДНК дает начало хромосоме, в которую входят уже две копии этого гена, расположенные одна за другой. Такие дупликации сами по себе не дают никаких преимуществ и встречаются, как правило, у очень немногих особей. Предположим, однако, что дупликация произошла в локусе, содержащем полезный мутантный аллель G, который с высокой частотой присутствует в популяции в связи с отбором в пользу гетерозигот и сосуществует в геноме с исходным аллелем G (рис. 14-7). Тогда велика вероятность того, что в диплоидной клетке, содержащей хромосому GG (несущую дупликацию), ее гомолог будет содержать аллель G, так что получится генотип GGjG. Затем в результате генетической рекомбинации в мейозе (см. ниже) могут образоваться гаметы с генотипом GG. В этих гаметах исходный ген G и мутантный G, расположенные один за другим, не будут уже двумя аллелями, конкурирующими за один и тот же локус теперь зто два отдельных гена, каждый из которых занимает собственный локус. Такая комбинация выгодна, и она станет быстро распространяться, пока наконец вся популяция не будет состоять из гомозигот GG /GG (см. рис. 14-7). Преимущество особей с таким генотипом состоит не только в обладании обоими генами-старым G и новым G, но и в том, что они могут передавать это преимущество всем своим потомкам. [c.13]

    Ряс. 35-33. Сравнение митотической рекомбинации и нормального митоза. СЬчов-ские хромосомы представлены серыми, материнские-белыми. Предположим, что геном содержит локус, определяющий пигментацию, с двумя аллелями К (краснын квадратик) и г (белый квадратик), поэтому гомозиготные клетки К/К изображены темно-розовыми, гетерозиготные К/г-светло-розовыми н гомозиготные г/г-белыми. А. В нормальном цикле деления материнская хромосома гетерозиготной клетки удваивается, образуя две хроматиды, соединенные в области центромеры обе хроматиды несут аллель К. Подобным же образом удваивается отцовская хромосома, образуя тоже две хроматиды, соединенные в области центромеры н несущие аллель г. В митозе две хроматиды каждой пары расходятся, и каждая из дочерних клеток получает случайным образом ту или иную из двух идентичных хроматид как первой, так и второй пары поэтому каждая дочерняя клегка наследует гетерозиготный генотип К/г. [c.84]

    Б. В аномальном цикле деления, где после репликации хромосом происходит митотическая рекомбинация, две хроматиды в каждой паре различны одна из них несет аллель К, а другая обменялась участком с одной из хроматид второй хромосомы н несет аллель г. В этом случае каждая из дочерних клеток унаследует в результате случайного распределения по одной из двух материнских и двух отцовских хро-матид. Таким образом, в результате митотической рекомбинации одна дочерняя клетка унаследует обе копни аллеля К, а другая-обе копни аллеля г, так что из гетерозиготной клетки К/г (светлоокрашенной) получатся две дочерние клетки с различным генотипом-одна гомозигота К/К (темноокрашенная) и одна гомозигота г/г (белая). Затем обе дочерние гомозиготы воспроизводятся обычным образом, и нх потомки образуют двойное пятно, состоящее из клона красных клеток К/К и клона белых клеток г/г, на фоне розовых клеток К/г, которые не претерпели митотической рекомбинации. [c.84]

    Чрезвычайно важное положение, следующее из таблицы дигибридного расщепления, состоит в том, что гены скрещиваемых сортов могут рекомбинироваться при образовании гибридами гамет. В результате становится возможным возникновение новых константных сортов с новыми сочетаниями признаков. Так, скрещивание (красные гладкие) X (белые морщинистые) приведет к возникновению в Ра новых сочетаний (красные морщинистые) и (белые гладкие). Если это выразить в виде формул, то скрещивание ААВВ У(ааЬЬ, помимо всего прочего, даст рекомбинации ААЬЬ и ааВВ. В эти сочетания входят те же самые гены, что и в прежние, однако они были перегруппированы, и эта перегруппировка, или рекомбинация, привела к образованию особей (а с их помощью, если мы захотим, и константных новых сортов) с совершенно новыми сочетаниями признаков. Такая рекомбинация представляет собой следствие того, что при. мейозе у гибридов доминантные и рецессивные гены разделяются и что гены, входящие в различные пары аллелей, наследуются независимо друг от друга. [c.53]

    Редко, однако, бывает, чтобы мутантный ген немедленно по возникновении обладал благоприятным эффектом. В боль шинстве случаев потенциальные возможности мутантной фор мы выявляются лишь в результате рекомбинации. У пере крестнооплодотворяющихся организмов постоянная перегруп пировка генов вызывает генотипические различия между всеми особями, кроме монозиготных двоен. Наряду с этим происходит генотипическая адаптация к условиям внешней среды, в процессе которой неподходящие комбинации генов элиминируются, а лучшие становятся преобладающими. Когда происходит новая мутация, то новый аллель комбинируется с другими генами, составляющими ту генотипическую среду, в которой появился мутантный аллель. Благодаря естественному отбору (или искусственному отбору у культурных растений и домашних животных) постепенно генотипической средой мутантного гена станет та, в которой он обеспечит наилучшую жизнеспособность и плодовитость либо другие благоприятные признаки. Таким образом, мутантный ген, первоначально обладавший бесспорно вредным эффектом, имеет известные возможности стать безвредным или даже полезным для организма в результате изменения генотипической среды. [c.202]

    Новая терминология, которая стала необходимой вследствие всех этих открытий, еще не устойчива. Наиболее необходим, пожалуй, термин гетероаллелизм. Аллели называются гетероаллельными, если путем рекомбинации или другими способами можно показать, что они расположены в разных местах одного сложного гена. Только будущее покажет, существуют ли вообще аллели, которые не являются гетероаллелями. [c.269]

    Полагают, что это интересное исключение из правил классической генетики возникло в результате ощибки в копировании при дупликации генов, выразивщейся в том, что один участок был скопирован дважды, а другой — ни разу. В нашем примере две хромосомы р1+ и +рг должны при делении произвести две хромосомы того же самого типа, но в исключительных случаях хромосома р[+ во время размножения может утратить ген р и вместо этого поймать плюс-аллель гомологичной хромосомы, В связи с этим следует упомянуть, что конверсия гена, так же как перекрест, предполагает предварительную тесную конъюгацию между двумя хромосомами. Пока еще не установлено, насколько часто может происходить это явление, однако имеющиеся данные показывают, что конверсия гена — исключительный случай и обычно не имеет большого биологического значения, У бактериофагов рекомбинации, возможно, возникают довольно сходным путем, но вопрос о них. еще остается открытым. [c.275]

    Гетероаллель — аллели, расположенные в различных местах комплексного гена, что удается определить путем рекомбинаций или иными способами, ,, l  [c.453]

    У диплобионтов могут до определенной степени сохраняться в скрытом виде рецессивные аллели, которые у гаплобионтов сразу привели бы к гибели организма и, естественно, сами исчезли бы эти сохраненные рецессивные аллели в результате рекомбинации могут при случае обусловить возникновение новых полезных типов. [c.140]

    Теперь возникает новый вопрос. Если вероятность перехода маркеров в зиготу монотонно падает, и при том по экспоненте начиная от точки О (вблизи локусов Т и L), то непонятно, каким образом Ледербергу удавалось определить расстояния на генетической карте Е. oli по выходу рекомбинантов между нарой маркеров. Ведь основная статистическая предпосылка в законе рекомбинации заключается в том, что образуется всегда полная зигота и что вероятность выбора в потомстве между двумя аллелями одного признака (например, Т и T или и L ) в среднем всегда 0,5. При образовании мерозигот ничего похожего нет. Материнская хромосома всегда присутствует в зиготе как целое, вероятность же появления различных локусов отцовской хромосомы падает как [c.320]

    Следовательно, в этом случае гетерозиготы с концевой избыточностьк> могут возникать по любому гену фага. Геном фаговой частицы, возникшей в скрещивании г X г , будет характеризоваться концевой избыточностью и гетерозиготностью по гену г, если ген г окажется на конце этого генома и в каком-нибудь участке генома произойдет перекрест, так что на одном конце окажется аллель г, а на другом — аллель г . Наличие в ДНК Т-четных фагов циклических перестановок позволяет объяснить, как линейная молекула может соответствовать кольцевой генетической карте, изображенной на фиг. 143. Стрезингер сумел привести ряд генетических доказательств в пользу существования как внутренних гетерозигот, так и гетерозигот с концевой избыточностью, а следовательно, и в пользу циклических перестановок в Т-четном геноме. Кроме того, Стрезингеру удалось показать, что расщепление таких гетерозигот с Концевой избыточностью представляет собой очередной акт генетической рекомбинации, в результате которой один из повторяющихся участков [c.297]

    РЕЦИПРОКНАЯ РЕКОМБИНАЦИЯ. Образование новых генотипов с противоположным расположением аллелей по сравнению с их организацией у матери или отца. [c.526]

    Предположение об участии в репарации и в рекомбинации одних и тех же ферментов впервые получило экспериментальное подтверждение, когда в 1965 г. А. Кларк открыл Кес -мутанты Е. соН, неспособные к генетической рекомбинации ни при конъюгации, ни при трансдукции.Можно проследить, что этот дефект обусловлен мутациями в нескольких генах гес, один из которых, re k, расположен между 50-й и 55-й минутами генетической карты Е. oli (фиг. 123). У этих мутантов Re " нормально протекает конъюгация (или адсорбция трансдуцирующего фага) не нарушено у них и проникновение в клетку донорной ДНК- Однако поступившая в клетку ДНК у этих мутантов не включается в геном реципиента, если только в реципиентную клетку не попал также и аллель Re " донорного гена гес. Таким образом, гены гес, по-видимому, контролируют образование ферментов, необходимых для процесса рекомбинации. Кроме своей неспособности к генетической рекомбинации, мутанты Re " отличаются еще одним удивительным свойством они обладают ненормально высокой чувствительностью к ультрафиолетовому облучению и напоминают в этом отношении мутантов по гену uvr. Изучение метаболизма ДНК у мутантов по гену гес после облучения ультрафиолетом показывает, однако, что в отличие от мутантов по гену uvr они способны иссекать и репарировать индуцированные ультрафиолетом тиминовые димеры. [c.379]

    Даже у прокариот информация, получаемая от вну-тригенного картирования, ограничена природой рекомбинационного акта. На уровне внутригенного картирования частота рекомбинации частично зависит от природы мутаций, использованных в скрещивании, и может в большой степени определяться последовательностью ДНК в данном участке. Другими словами, здесь вместо идеального свойства независимости аллелей, которое мы обсуждали в гл. 1, проявляется эффект специфичности аллелей. Поэтому наши представления о гене с позиций генетической карты искажаются особенностями рекомбинационных систем. [c.43]

    Участие гетеродуплексной ДНК в рекомбинации объясняет многие особенности рекомбинации между аллелями эти данные послужили основой для разработки модели рекомбинации с участием гетеродуплекса. Когда было открыто явление межащельной рекомбинации, предполагали, что она осуществляется с помощью того же механизма реципрокной рекомбинации, который используется для более удаленных локусов, однако в этом случае при образовании реципрокной пары рекомбинантных хромосом между локусами происходит отдельное событие разрыва и воссоединения. Следует отметить, что образование гетеродуплексной ДНК само по себе может привести к рекомбинационному событию. [c.452]

    Если в одном из Ig -аллелей V- и J-сегменты стыковались неудачно, то возможна ситуация, когда другой V-ren совершит скачок и соединится с одним из оставшихся сегментов J, расположенных позади того, который перестроился ранее. Если такое соединение происходит путем неравного кроссинговера, Ig -локус, образованный в результате неправильной дупликации, все же способен обеспечивать соединение V- и С-генов, расположенных по обе стороны от этой дупликации. Эта модель объясняет природу необычных структур, обнаруживаемых в локусах с непродуктивной перестройкой. Они также могут быть объяснены сменяющими друг друга сериями внутрихро-мосомных делеций и инверсий. В соответствии с данной моделью клетка осуществляет рекомбинацию V- и С-генов до тех пор, пока не будет достигнута продуктивная перестройка. Аллельное исключение обусловливается подавлением дальнейшей перестройки сразу же после образования активной цепи. Эта обратная связь осуществляется независимо для локусов тяжелых и легких цепей (гены тяжелых цепей обычно перестраиваются первыми), однако в случае легких цепей это правило должно выполняться в равной мере для обоих семейств (клетки могут иметь активную цепь либо каппа-, либо лямбда-типа). Вероятно, каппа-гены перестраиваются раньше, и перестройка генов лямбда происходит только в том случае, если обе попытки перестроить каппа-гены оказались неудачными. [c.512]


Смотреть страницы где упоминается термин Рекомбинация аллелей: [c.254]    [c.85]    [c.85]    [c.445]    [c.453]    [c.453]    [c.10]    [c.83]    [c.490]    [c.295]    [c.193]    [c.318]    [c.52]    [c.28]    [c.294]    [c.479]   
Основы биологической химии (1970) -- [ c.477 ]




ПОИСК





Смотрите так же термины и статьи:

Аллели

Рекомбинация



© 2025 chem21.info Реклама на сайте