Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенантрен синтез

    Стильбен при пропускании через раскаленные трубки образует фенантрен (синтез, аналогичный синтезу дифенила из бензола)  [c.236]

    Другим способом синтеза бифункциональных металлорганических катализаторов является взаимодействие щелочных металлов с некоторыми ароматическими углеводородами (нафталин, антрацен, фенантрен, дифенил, терфенил и т.- п.), а также с некоторыми ароматическими производными этилена (стильбен, 1,1-дифенил-этилен, трифенилэтилен и т. д.). Реакция протекает обычно в полярных растворителях через стадию образования ион-радикала [3, с. 365]  [c.413]


    Для выделения ароматических углеводородов с конденсированным циклами (нафталин, антрацен, фенантрен) используют главным образом методы кристаллизации. Из антраценовых фракций каменноугольной смолы (270—350 °С) сплавлением с едким кали и последующим гидролизом выделяют еще одно ценное для органического синтеза вещество — карбазол  [c.70]

    Тенденции, отмеченные у нафталина, еще в большей мере проявляются у фенантрена и особенно у антрацена. Эффект стабилизации у фенантрена составляет 385,10 кДж/мюль, а у антрацена 351,69 кДж/моль. В случае присоединения двух атомов водорода к антрацену понижение энергии сопряжения составляет всего 50,2 кДж/моль. Антрацен и фенантрен более реакционноспособны, чем нафталин и, тем более, чем бензол. В значительно большей степени антрацен и фенантрен способны к реакциям присоединения, идущим, как правило, по лезо-углеродным атомам 9 и 10. Среднее кольцо у антрацена отличается особой ненасыщенностью. Так, при взаимодействии с диенофилами, например с малеиновым ангидридом, образуется сравнительно стабильный продукт диенового синтеза  [c.21]

    Фенантрен рассматривался как потенциальное сырье для синтеза фталевого ангидрида [85]. Однако из-за низких выходов последнего (60%) фенантрен не может конкурировать с нафталином и о-ксилолом. Внимание исследователей уделялось продуктам окисления фенантрена — дифеновой кислоте и получаемому из нее дифеновому ангидриду. Дифеновая кислота используется в тех же направлениях, что и фталевый ангидрид [158] . Изделия из стеклопластиков, связанные ненасыщенными полиэфирами, модифицированными дифеновой кислотой, обладают более высокой механической прочностью, большей термической и химической стойкостью [159]. Сложные эфиры дифеновой кислоты могут стать перспективными пластификаторами, превосходящими в силу малой летучести и лучших диэлектрических характеристик соответствующие фталаты [128, с. 122]. Возможность использования дифеновой кислоты вместо фталевого ангидрида определяется экономикой, а последняя — возможностью получения дешевой дифеновой кислоты. [c.105]

    Химическая промышленность из соединений фенантренового ряда выпускает только сам фенантрен. В то же время разработка методов получения производных фенантрена, являющихся перспективными реагентами для неорганического и нефтехимического синтеза, представляет научный и практический интерес. [c.30]

    Окислением ароматических колец могут быть получены фенолы, хиноны и карбоновые кислоты, весьма важные для синтеза промежуточных продуктов, красителей и полимеров. Окисление ароматических колец, как правило, идет значительно труднее, чем окислительные реакции в боковых цепях. Из ароматических углеводородов бензол, в котором электронная плотность полностью выравнена, окисляется труднее всего. Нафталин, в котором эта выравненность нарушена, окисляется значительно легче. Еще легче по тем же причинам идут эти процессы с антраценом и фенантреном. Во всех случаях электронодонорные заместители в кольце облегчают течение реакций окисления. [c.323]


    Одним из наиболее полезных применений системы металл -аммиак для целей органического синтеза является восстановление ароматических колец. Растворы металлов в жидком аммиаке в присутствии спирта в качестве донора протона или без него выступают как достаточно мощные агенты для того, чтобы восстановить ароматическое кольцо, и одновременно достаточно специфичные, чтобы восстановление провести лишь частично до дигидробензолов (циклогексадиенов). Этот тип реакции известен как восстановление по Берчу, Легкость восстановления в первом приближении коррелирует с восстановительным потенциалом соединения и уменьшается в порядке > антрацен > фенантрен > > нафталин > дифенил > бензол. Сам бензол не удается восстановить щелочным металлом в жидком аммиаке, и его восстановление может быть успешно проведено до 1,4-дигидробензола лишь в присутствии более эффективного донора протонов, такого как этанол  [c.171]

    Ароматические углеводороды (бензол, толуол, ксилол, фенол, пиридин, антрацен, фенантрен, нафталин и др.), получаемые из каменноугольной смолы, а также из нефти, получили в синтезе красителей название исходных веществ. [c.270]

    Основная схема синтеза приведена на рис. 35.3. Нафталин ацилируется янтарным ангидридом в положение как 1, так и 2 эти два продукта можно разделить и любой из них можно превратить в фенантрен. Обратим внимание на то, что -у-(2-нафтил)масляная кислота циклизуется по положению 1 с образованием фенантрена, а не по положению 3 с образованием антрацена электронодонорная боковая цепь в положении 2 направляет дальнейшее замещение в положение 1 (разд. 35.13). [c.1008]

    Применение. Фенантрен применяется в качестве исходного сырья в органическом синтезе, например для получения фенантрен-хинона, который, в свою очередь, используется для синтеза красителей. Производные фенантрена, особенно частично или полностью гидрированные, содержатся в природных продуктах (алкалоиды, стероиды). [c.209]

    В предыдущей статье показано, что при нагревании ацетилена до 700° С образуются ароматические углеводороды бензол, нафталин, антрацен, фенантрен и др. Представляет интерес установить состав нафталина, выделяемого из жидких продуктов полимеризации ацетилена, особенно в связи с использованием его в качестве исходного сырья для дальнейшего синтеза препаратов. [c.149]

    Антрацен и карбазол применяются в промышленности тонкого органического синтеза. Фенантрен получается в большем количестве, чем антрацен и карбазол, но используется пока в незначительной степени. [c.101]

    Коксохимическая промышленность в СССР является одним из основных поставщиков сырья для органического синтеза Коксохимия дает ряд продуктов, которые нигде более не получают пиколины, крезолы, мезитилен, карбазол, фенантрен, аценафтен Ассортимент химических продуктов, выпускаемых в СССР на основе летучих продуктов коксования каменных углей, составляет более 200 наименований [c.14]

    К эффективным естественным ингибиторам окисления относятся также конденсированные ароматические системы — нафталин, фенантрен, антрацен и др. Соединения этого типа сравнительно легко образуют свободные радикалы и ион-радикалы. Вероятно, этими свойствами конденсированных систем и обусловливается их указанное выше ингибирующее действие. Выделенные из антрацена парамагнитные соединения характеризуются более высоким ингибирующим действием, чем исходный антрацен [42]. Свободные радикалы образуются в процессе синтеза антрацена, при его термообработке (450 °С) или облучении. При окислении кислородом конденсированных ароматических соединений образуются также арилоксидные свободные радикалы. Таким образом, многие ароматические соединения, легко образующие стабильные свободные радикалы или ион-радикалы, могут выступать в качестве естественных ингибиторов окисления. [c.43]

    Менее концентрированную фракцию получают при переработке сернистых смол, отличающихся высоким содержанием дифениленсульфида [7, с. 376]. Полученную фракцию кристаллизуют, а кристаллы отделяют от жидкой фазы центрифугированием и прессованием (аналогично производству прессованного нафталина). Фенантреновая фракция, полученная на восточных заводах (в условиях промышленных экспериментов), содержала 65—70% фенантрена, а при кристаллизации и прессовании получали 80%-ный технический фенантрен, пригодный для синтеза дифеновой кислоты окислением озоном. [c.310]

    Реакция замещения диазогруппы на арил находит успешное применение в открытом Пшорром (1896) общем методе синтеза производных фенантрена. При конденсации о-нитробензальдегида с фенилацета-том натрия (или его производными) и уксусным ангидридом по Перкину образуется главным образом г с-а-фенил-о-нитрокоричная кислота. Последнюю превращают в амин, а затем в диазониевую соль, которая под каталитическим действием порошкообразной меди отщепляет азот и хлористый водород и с замыканием кольца образует фенантрен-9-карбоновую кислоту. [c.264]

    Многоядерные углеводороды можно также синтезировать путем дегидратации о-ацилдифенилметанов процесс этот называют циклодегидратацией [43, 44]. В качестве дегидратирующего агента используют или смесь бромистоводородной и уксусной кислот, или серную кислоту. В результате такого синтеза был получен ряд 9- и 10-алкил-н 9- и 10-арилантраценов, фенантренов и бензантраценов с удовлетворительными, а иногда и хорошими выходами. Первой стадией реакции, по-видимому, является протонирование с образованием сопряженной кислоты I, которая атакует в орто-положенне соседнего кольца собразованием комплекса П. Последний в свою очередь отдает сначала протон, а затем отщепляет воду, давая многоядерный углеводород П1 [45] [c.52]


    Поскольку диазосочетания по своей природе — это большей частью свободнорадикальные реакции, весьма любопытно, что можно упомянуть очень мало синтезов с медью или закисью меди в качестве катализаторов. При сочетании о-диазостильбенов с образованием фенантренов по Пшорру благоприятное действие оказывает добавление меди [13] возможно, что от этого выиграют и другие реакции сочетания. [c.70]

    Авторы синтеза применяли сырой бромфенантрен, получаемый бронированием технического (90%-ного) фенантрена, и подвергали его с целью очистки только перегонке. Альдегид 9-антрацен-карбоновой кислоты, который может образоваться из антрацена, содержащегося в качестве примеси в 90%-ном фенантрене, не образует продукта присоединения с бисульфитом натрия и, таким образом, не будет загрязнять альдегид 9-фенантренкарбоновой кислоты. При проверке синтеза применялся чистый 9-бромфснантрен с т. пл. 54—56° (стр. 97), но это не привело к увеличению выхода. Авторы синтеза сообщают, что при использовании чистого 9-бромфенантрена выход составлял 55—60%. [c.24]

    Продажный фенантрен был пер екристаллизовап из кипящего толуола с применением активированного березового угля. После одной перекристаллизации был получен препарат с т. пл. 99,5°. При проверке синтеза применяли технический (90%-ный) фенантрен. [c.74]

    Ангулярное аннелирование является методом синтеза различных полицикли-ческих конденсированных систем. Так, синтез ПШОРРА приводит к получению фенантренов циклизацией солей диазония (из ароматических о-интроальдегидои и арилуксусных кислот)  [c.43]

    Бромирование антрацена или фенантрена происходит в положение 9. (9-Бромфенантрен образуется в качестве промежуточного продукта при синтезе некоторых 9-замещенных фенантренов.) В обоих случаях, особенно для антрацена, проявляется тенденция к протеканию реакции присоединения с образованием 9,10-дибром-9,10-дигидропроизводных. [c.1004]

    Если вместо бензола в синтезе Хеуорса (разд. 35.14) использовать нафталин, то реакция с янтарным ангидридом будет прекрасным способом получения замещенных фенантренов. [c.1007]

    Фенантрен был открыт в 1872 г. Гребе в каменноугольной смоле, откуда его выделяют и в настоящее время. Для препаративных целей пригодны синтезы Пшора (1896 г.) и Хеворта (1932 г.). По первому методу с помощью реакции Перкина (см. раздел 2.2.5.1) из о-нитробенз-альдегида и фенилуксусной кислоты получают а-фенил-2-нитрокорич-ную кислоту, из которой через стадию а-фенил-2-аминокоричной кислоты приходят к фенантрен-9-карбоновой кислоте. Последняя при перегонке декарбоксилируется (отщепляет диоксид углерода)  [c.280]

    Синтез полициклических соедииений. 2,2 -бис-(Бромметил)-дифе-нил (1) взаимодействует с 1 молем трифенилфосфина с образованием фосфониевой соли (2), которая ири обработке основанием (метилат натрия) превращается в илид (3). Илид (3), не выделяя, подвергают внутримолекулярному С-алкилированию и получают фосфониевую соль (4). Эта соль прн обработке феииллитием дает нлид (5), нз которого легко образуются фенантрен и 9-замещенные фенантрены [31. [c.281]

    Ароматкческке хлорзамещенные соедкиения. Для синтеза три-фенилов, фенантренов, фосфор- и борорганических соединений применяется фотолиз ароматических иодидов [1 , Проведение фот лиза в У. ч, при облучении светом с длиной волны 3000 А в течение 5 час приводит к образованию соответствующих хлорзамещенных ароматических соединений с выходами от 50 до 95% [2 . [c.307]

    С нафталином янтарный ангидрид дает смесь а- и -нафтоил-п]ропионовых кислот, а с фенантреном р-[3-фенантроил]-лропио-новую кислоту Эти реакции можно использовать для синтеза фенантрена, бензантрацена и хризена. [c.82]

    Фенантрен ,4HJ2 выделяют из антраценовой фракции при переработке каменноугольной смолы. Бесцветные кристаллы, т. пл. 100 °С. Нерастворим в воде, растворим в этаноле, диэтиловом эфире, бензоле. Растворы имеют голубую флуоресценцию. Применяют в синтезе красителей. Фрагмент фенантрена, в том числе частично или полностью гидрированный, содержится во многих природных соединениях (алкалоиды, терпены, стероиды). ПДК 0,8 мг/м . [c.504]

    Ко второй группе относятся метилхолантрен и другие ароматические углеводороды. Они индуцируют синтез одной молекулярной формы цитохрома, цитохрома Р448, которая отсутствует у интакт-ных животных. Эта форма фермента имеет узкую субстратную специфичность и катализирует биотрансформацию фенантренов, бен-зантрацена и некоторых пиренов. [c.407]

    Научные исследования посвящены ароматическим, в частности многоядерным, соединениям. Показал (1866), что бензолеиновая кислота, полученная А. В. Г. Кольбе, содержит дигидробензольное ядро. Получил (1867) дигидрофта-левую кислоту и предложил правильную формулу фталевой кислоты. Совместно с К- Т. Либерманом получил (1868) антрацен восстановлением природного ализарина цинковой пылью. Они же впервые осуществили (1869) синтез ализарина из антрацена через броми-рование антрахинона и сплавление бромюра с поташем. Результаты этой работы послужили основой создания дешевого промыщленно-го способа производства ализарина (1869, совместно с Либерманом и Г. Каро), который прежде получали из корней марены. Указал на хромофорные свойства азогруппы. Доказал (1868) правильность формулы нафталина, предложенной Р. Л. К- Э. Эрленмейером. Установил (1869), что нафталин, антрацен и другие углеводороды с конденсированными ядрами следует относить к ароматическим соединениям. Совместно с Г. Каро открыл (1870) акридин. Выделил из каменноугольной смолы карбазол и фенантрен. Синтезировал (1872) фенантрен и определил его строение. Совместно с Ф. Ульманом [c.151]


Смотреть страницы где упоминается термин Фенантрен синтез: [c.99]    [c.509]    [c.146]    [c.312]    [c.37]    [c.298]    [c.138]    [c.181]    [c.291]    [c.460]    [c.291]    [c.460]    [c.285]    [c.39]   
Органическая химия Углубленный курс Том 2 (1966) -- [ c.147 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Фенантрен



© 2025 chem21.info Реклама на сайте