Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометр фотоэлектрический

Таблица 5. Стилоскопы, спектрографы, спектрометры, фотоэлектрические установки для спектрального анализа Таблица 5. Стилоскопы, спектрографы, спектрометры, <a href="/info/377316">фотоэлектрические установки</a> для спектрального анализа

    ИЗМЕРЕНИЕ СКОРОСТИ РЕАКЦИИ С ИСПОЛЬЗОВАНИЕМ АБСОРБЦИОННОЙ СПЕКТРОМЕТРИИ (ФОТОЭЛЕКТРИЧЕСКИЙ ПРИБОР) [c.214]

    Глава 29. Измерение скорости реакций с использованием абсорбционной спектрометрии (фотоэлектрический прибор)................602 [c.428]

    Из малогабаритных многоканальных фотоэлектрических спектрометров наибольшее распространение получил кван-тометр МФС-4. Он имеет вогнутую дифракционную решетку с 1800 штрих/мм и радиусом кривизны 1 м. Рабочая область спектра 200—360 нм. Прибор имеет 12 каналов, что позволяет одновременно определять содержание одиннадцати элементов. [c.70]

    Рис, 7.20. Схема вакуумного фотоэлектрического спектрометра ДСФ-31 с дифракционной решеткой  [c.178]

    Спектрометрический анализ. Спектрометрический метод используют преимущественно для количественного анализа растворов или металлов. Часто интересуются определением только отдельных элементов. При одновременном присутствии нескольких элементов для каждого элемента необходимо иметь свой фотоэлектрический приемник (многоканальный спектрометр) или, используя эффективную автоматику, регистрировать аналитические линии определяемых элементов только одним приемником. В первом случае измерение интенсивностей всех линий происходит одновременно (установки прямого отсчета), во втором — последовательно, через небольшие интервалы-(установки последовательного отсчета). [c.195]

    Основное преимущество спектрометрического метода состоит в высокой точности измерений ( + 0,1—1,0%) средних величин интенсивностей спектральных линий. Для спектрографического метода затруднительно получить результат с точностью ниже 5%. В зависимости от концентрации определяемого элемента точность будет меняться, Для измерения высоких концентраций элементов метод спектрометрии имеет явные преимущества. Для средних концентраций (0,1—0,01%) точность фотоэлектрического метода выше спектрографического в 2—3 раза, в то время как при анализе следов часто оказывается предпочтительнее использовать спектрографический метод. [c.113]

    По способу регистрации спектра все спектральные методы разделяются на визуальные, фотографические и фотоэлектрические, а спектральные приборы — на спектроскопы (стилоскопы), спектрографы и спектрометры (квантометры). Наиболее важными частями спектральных приборов являются диспергирующее устройство и щель прибора, так как спектральная линия— это ее монохроматическое изображение. Основной деталью щели являются ее щечки. Промежуток между щечками должен быть правильной формы,. края имечек строго параллельны и скошены в виде ножа, чтобы отраженный от них свет не попадал в прибор. Щечки раздвигаются с помощью микрометрического винта, позволяющего устанавливать ее ширину с точностью до 0,001 мм. Рабочая ширина щели составляет 0,005—0,020 мм, поэтому малейшее ее загрязнение приводит к искажению спектра и ошибкам U анализе. Поверхности ножей щели очищают заостренной палочкой из мягких пород дерева (спичка). Не рекомендуется проводить очистку металлическими [c.650]


    С усилителем и самописцем. При измерении интенсивности линий с колеблющейся интенсивностью возбуждающего света необходимо записывать отношение сигнала КР и луча сравнения. В большинстве промышленных спектрометров КР используют фотографические или фотоэлектрические системы записи. Спектры записывают в линейной шкале волновых чисел. [c.291]

    Ключом к пониманию работы спектрометра с дисперсией по энергии служит то, что амплитуды импульсов, производимых детектором, в среднем пропорциональны энергии входящего рентгеновского кванта. Основной процесс детектирования, с помощью которого происходит пропорциональное преобразование энергии фотона в электрический сигнал, иллюстрируется на рис. 5.17. Невозмущенный 51 (Ь1)-кристалл обладает зонной структурой (описание зонной структуры дано в обсуждении катодолюминесценции в гл. 3), в которой состояния в зоне проводимости свободны, а состояния в валентной зоне заполнены. При захвате высокоэнергетического фотона электроны перебрасываются в зону проводимости, оставляя дырки в валентной зоне. При наличии напряжения смещения электроны и дырки разделяются и собираются электродами, расположенными на поверхностях кристалла. Захват фотонов осуществляется путем фотоэлектрического поглощения. Падающий рентгеновский фотон вначале поглощается атомом кремния и испускается высоко-энергетический электрон. Затем этот фотоэлектрон по мере того, как он движется в кремниевом детекторе и испытывает неупругое рассеяние, генерирует электронно-дырочные пары. Атом кремния остается в состоянии с высокой энергией, поскольку на испускание фотоэлектрона потребовалась не вся энергия рентгеновского кванта. Эта энергия впоследствии выделяется либо в виде оже-электрона, либо в виде кванта рентгеновского характеристического излучения кремния. Оже-электрон испытывает неупругое рассеяние и также создает электронно-дырочные пары. Кванты рентгеновского излучения кремния могут повторно поглощаться, инициируя процесс снова, или неупруго рассеяться. Таким образом, имеет место последовательность событий, в результате чего вся энергия первичного фотона остается в детекторе, если только излучение, генерируемое в одном из актов [c.213]

    Хотя спектрографы все еще применяются, они были вытеснены с рынка спектрометрами. Спектроскопы исторически использовали для визуального наблюдения спектров. Напротив, в спектрометрах используются фотоэлектрические детекторы. Спектрометры обычно подразделяют на две категории монохроматоры и полихроматоры. Монохроматор —это спектрометр, который [c.24]

    Сцинтилляторы, которые наиболее часто применяются для гамма-спектрометрии, представляют собой одиночные кристаллы йодида натрия, активированного таллием. Сцинтилляционные спектры гамма-излучения состоят из одного или более острых характерных фотоэлектрических пиков, соответствующих энергиям источника гамма-радиации. Поэтому эти спектры полезны для идентификации, а также для обнаружения гамма-излучающих примесей в препарате. Кроме характерных пиков, в спектре обычно имеются и другие пики, обусловленные вторичным воздействием радиации на сцинтиллятор и его окружение, таким, как обратное отражение, аннигиляция позитронов, суммирование совпадений и флуоресцентные рентгеновские лучи. Кроме того, в результате рассеяния гамма-фотонов в сцинтилляторе и окружающих материалах возникают щирокие полосы, известные как спектры Комптона (эффект Комптона). Калибровка прибора производится с помощью известных образцов радиоактивных изотопов, энергетические спектры которых определены. Форма спектров будет различной в зависимости от используемых приборов это определяется различной формой и размерами кристаллов, применяемыми защитными материалами, расстоянием между источником излучения и детектором, а также типами дискриминаторов, используемых в амплитудных анализаторах импульсов. При использовании спектра для установления подлинности радиоизотопов необходимо сравнивать спектр исследуемого образца со спектром известного вещества, радиоактивность которого измерена тем же прибором и при тех же условиях. [c.78]

    Некоторые радиоизотопы, например йод-125, испускают характерные рентгеновские лучи с четко выраженными энергиями, которые будут давать фотоэлектрические пики в соответствующем гамма-спектрометре. Бета-радиация также взаимодействует со сцинтилляторами, но эти спектры непрерывны и диффузны и обычно не могут быть использованы для идентификации радиоизотопа или для обнаружения бета-излучающих примесей в препарате. [c.78]

    Сравнительно недавно для анализа горных пород, почв и других природных объектов стали применять многоканальные спектрометры с фотоэлектрической регистрацией спектра — квантометры [241]. При анализе природных объектов преобладают образцы меняющегося состава, и поэтому трудности при программировании работы квантометров возрастают. Однако опыт работы с этими приборами показывает их преимущества. [c.81]


    Многоканальные спектрометры. Спектральные приборы с фотоэлектрической регистрацией (спектрометры) подразделяются на два вида многоканальные и сканирующие. [c.385]

Рис. 14.24. Принципиальная схема фотоэлектрического спектрометра Рис. 14.24. <a href="/info/24285">Принципиальная схема</a> фотоэлектрического спектрометра
    В последнее время на основе твердотельных фотоэлектронных детекторов интенсивно разрабатываются приставки (кассеты) к существующим спектрографам. По своим размерам они совместимы с фотографическими кассетами, превращая, таким образом, спектрограф в многоканальный спектрометр с фотоэлектронной регистрацией спектров. В результате реализуется совмещение оперативности регистрации, характерной для фотоэлектрического способа детектирования, с возможностью обзорного изучения и архивирования спектров проб в памяти компьютера аналогично хранению спектров на фотопластинках. [c.396]

    Точно такой же прием может быть использован для стабилизации градуировочных зависимостей и при фотоэлектрической регистрации спектров. Например, для многоканального спектрометра (типа ДФС-36) связь между показаниями его отсчетного устройства и концентрацией определяемого элемента имеет вид [c.406]

    Регистрация флуоресценции. Регистрирующая часть атомно-флуоресцентного спектрометра состоит из системы сбора излучения флуоресценции, системы спектральной фильтрации излучения флуоресценции от неселективно рассеянного возбуждающего излучения и теплового изл) ения атомизатора, фотоэлектрического приемника, усилителя, строб-интегратора и системы обработки данных. [c.852]

    Одним из таких приборов является фотоэлектрический спектрометр с прямым отсчетом (рис. 5.27). Он представляет собой спектрограф с решеткой, в котором держатель для фотопластинки или пленки заменен непрозрачным экраном, изогнутым по форме фокальной кривой и имеющим 12 или более щелей, размещенных в соответствии с длинами волн анализируемых элементов. Позади каждой щели монтируется фотоумножитель (см. гл. 22). Отдача каждого фотоумножителя регистрируется автоматически, так что можно непосредственно определить относительную мощность излучения для каждого из 12 элементов. Один среди исследуемых элементов является внутренним эталоном, с которым сравниваются остальные. Для определения всех И элементов нужно меньше минуты. [c.103]

Рис. 5.27. Фотоэлектрический спектрометр с прямым отсчетом. Рис. 5.27. <a href="/info/141006">Фотоэлектрический спектрометр</a> с прямым отсчетом.
    Фотоэлектрический спектрометр включает монохроматор для получения монохроматического света и фотометр для измерения оптической плотности. [c.34]

    По назначению 1) монохроматоры — простые и двойные, выделяющие узкую спектральную область или спектральную линию 2) полихроматоры, выделяющие одновременно несколько узких областей спектра или несколько спектральных линий 3) спектрографы и спектроскопы, позволяющие получать или наблюдать одновременно широкие области спектра 4) спектрометры — приборы, сканирующие спектры при помощи фотоэлектрического или теплового приемника и регистрирующего устройства. [c.11]

    Рассеянное излучение анализируется при помощи либо спектрографа (фотографическая регистрация), либо сканирующего спектрометра (фотоэлектрическая регистрация). При работе со сканирующим спектрометром возникают трудности при измерении частот, особенно в протяженном спектре (см., например, обсуждение этой проблемы в случае ИК-спектроскопии высокого разрешения в работе [78]), поэтому в структурных исследованиях преимущественно применяют фотографические приборы. С другой стороны, при исследовании относительной интенсивности полос в спектрах КР с большим успехом используют сканирующие спектрометры [79]. Дифракционные приборы с высокой дисперсией и высоким разрешением пригодны для большинства исследований в области спектроскопии КР. Причем используются как стандартные приборы с вогнутой решеткой в установке Уодсворта или Игля [80, 91], так и специально созданные приборы с плоской дифракционной решеткой [82—85]. Для уменьшения требуемых экспозиций весьма эффективно перед фотопластинкой помещать цилиндрическую линзу [86], дающую изображение объектива камеры на фотоэмульсии. Типичными фотоматериалами, используемыми в спектроскопии КР, служат пластинки Кодак ЮЗа-О, ЮЗа-Р, Па-0 (выдержанные перед экспонированием при температуре 61 °С в течение 24 ч) и 1а-Е, IIIa-J (выдержанные при температуре 50 °С в течение 20 ч). [c.187]

    Выпускают фотоэлектрические спектрометры двух типов сканирующие и многоканальные. Приборы первого типа имеют на выходе щель, иа которую последовательно выводят аналитические линии всех определяемых элементов, что ограничивает скорость анализа. Для одновременного определения содержания всех элементов в анализируемой пробе необходимо из спектра выделить соответствующее число линий разных элементов. Для этого в фокальной поверхности спектрального прибора устанавливают соответствующее число выходных щелей. Прибор такого типа называют иолихроматором или кваитометром. [c.70]

    Многоканальные фотоэлектрические спектрометры (каантометры) широка применяют а промышленности для экспрессного и маркировочного анализа металлов и сплавов. Типичная функциональная схема квантометра показана на рис. 3.31, Спектральный прибор представляет собой полихроматор, в котором входная ш,ель, вогнутая дифракционная решетка и передвижные выходные щели расположены по кругу Роуланда. Излучение источника света, работающего в атмосфере инертного газа, растровым конденсором направляется через входную щель на дифракционную решетку с радиусом кривизны 1—2 м и числом штрихов до 2400 на 1 мм. Дифракционная решетка разла- гает излучение в спектр и фокусирует его по дуге АВ. Выходные щели выделяют из этого спектра нужные линии. За выходными щелями расположены зеркала, направляющие выделенные излучения на фотокатоды фотоумножителей. [c.133]

    Спектр может регистрироваться визуально (спектроскопами), фотографически (спектрографами) и фотоэлектрически (фотометрами, спектрометрами, спектрофотометрами). Широко используется [c.53]

    Определение магния в алюминиевых сплавах в дуге переменного тока описано в [127, 216, 245]. Об анализе алюминиевых сплавов с помощью фотоэлектрического стилометра и генератора ГЭУ-1 см. в [389], а с помощью фотоэлектрического спектрометра ДФС-10 — в [59]. Описан метод анатиза алюминиевых сплавов из растворов [770]. [c.173]

    Спектрометрия электроразрядных источников света. Простейшие способы фотоэлектрической регистрации возможны только при использовании источников возбуждения спектров, обеспечивающих во времени и пространстве постоянное свечение. Большинство электроразрядных источников возбуждения спектров, применяемых в многоканальных спектрометрах (кван-тометрах), такими свойствами не обладает, поэтому основным способом измерения относительной интенсивности спектральных линий, принятым в квантомет-рах, является измерение заряда на накопительных конденсаторах (рис. 14.37, а) используются как линейная, так и логарифмическая схемы измерений. Линейная схема основана на методе зарядки накопительных конденсаторов, а логарифмическая — на методе их разрядки или использовании экспоненциального соотношения между динодным напряжением ФЭУ и силой фототока. [c.414]

    С138) с успехом можно определять при помощи сцинтилляцион-ных счетчиков с использованием активированных таллием кристаллов йодистого натрия. Хорошие результаты обусловлены высокой тормозящей способностью йодистого натрия и прекрасным энергетическим разрешением значительной части 7-квантов, принимающих участие в фотоэлектрическом процессе. Этот счетчик, снабженный двухканальной дискриминационной схемой, представляет собой в сущности гамма-спектрометр, позволяющий идентифицировать изотопы и одновременно проводить анализ нескольких изотопов. Благодаря высокой проникающей способности 7-лучей соединения, содержащие 7-активные изотопы, обычно удается анализировать в жидком и твердом состоянии без их выделения или предварительной химической обработки меченого материала. [c.25]

    Примером другого фотоэлектрического спектрометра является Квантометр , в котором производится автоматическая запись результатов [11]. Разновидностью этого спектрометра является прибор под названием Квантовак , в котором диапазон исследуемых длин волн расширен в уль- [c.104]

    На рис. 6.3.7 показаны функции отклика Се(Ь1)-спектрометра для у-квантов с энергиями 0,662 МэВ, 1,17 МэВ и 1,33 МэВ. Крайние правые максимумы (7 и 2) амплитудных расгфеделений обусловлены полным поглощением энергии у-квантов в чувствительной области детектора. Пик полного поглощения обусловлен процессами фотоэлектрического поглощения и многократного комптоновского рассеяния с последующим поглощением, причем относительная доля последнего процесса возрастает с увеличением размера чувствительной области детектора. Для высокоэнергетических у-квантов в пик полного поглощения вносят также вклад и импульсы от полного поглощения излучения, возникающего в процессе образования электрон-позитронных пар. [c.105]

    Сомнения, касающиеся структуры молекулы, были связаны в основном с неполнотой спектральных данных [1485, 2653]. В связи с этим Лонг, Мерфи и Вильямс [2640] и Рикс [3446] повторили исследование инфракрасного спектра поглощения и спектра комбинационного рассеяния СзОг. Авторы работы [2640] уделили особое внимание процессу получения и очистки исследуемых препаратов. Спектр комбинационного рассеяния жидкости регистрировался на фотоэлектрическом спектрометре с двумя призмами. Точность определения длин волн линий комбинационного рассеяния составляла +3 см . Инфракрасный спектр газообразной недокиси углерода в области от 275 до 4600 регистрировался в работе 12640] на спектрометре Перкин — Эльмера. Авторы [2640] снимали спектр поглощения различных фракций СзОг на разных этапах очистки, что позволило им уловить изменения в спектре, обусловленные наличием загрязнений. Выполненный авторами работы [2640] детальный анализ наблюдаемых спектров и сравнение со спектрами, полученными в предыдущих работах [1485, 2653], а также расчет силовых постоянных СзОг позволил выбрать основные частоты молекулы и дать интерпретацию инфракрасных полос и спектра комбинационного рассеяния на основе предположения о том, что молекула СзОг линейная и принадлежит к точечной группе симметрии 0 2. При этом оказалось необходимым постулировать существование активной в инфракрасном спектре частоты = 198 см . Исследуя спектры различных соединений в далекой инфракрасной области, О Лоан [3133] действительно нашел эту частоту в спектре СзОг, что явилось подтверждением правильности отнесения частот СзОг, предложенного в работе [2640]. [c.457]


Смотреть страницы где упоминается термин Спектрометр фотоэлектрический: [c.150]    [c.12]    [c.72]    [c.150]    [c.34]    [c.12]    [c.248]    [c.238]    [c.105]    [c.521]    [c.102]    [c.569]    [c.710]   
Инструментальные методы химического анализа (1960) -- [ c.158 ]

Инструментальные методы химического анализа (1960) -- [ c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Фотоэлектрический эф ект



© 2025 chem21.info Реклама на сайте