Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения концентрации элементов в растворах

    МЕТОДЫ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТОВ В РАСТВОРАХ [c.15]

    Определяют концентрацию калия и натрия в водопроводной воде графическим методом (см. Методы определения концентрации элементов в растворе ). Форма записи в лабораторном журнале описана в работе 1. [c.22]

    Гравиметрический метод определения растворимости основан на измерении массы вещества, называемой гравиметрической формой. Наиболее простой метод получения гравиметрической формы заключается в вьшаривании точно отмеренной массы насыщенного раствора и доведении сухого остатка до постоянной массы (метод сухого остатка, прямая гравиметрия). Этот наиболее простой метод определения концентрации насыщенного раствора, предложенный еще Гей-Люссаком, щироко используется и в настоящее время. Простой по своему экспериментальному выполнению, он имеет ряд ограничений. Метод не может быть использован в том случае, когда растворенное вещество летучее или при выпаривании между растворенным веществом и растворителем возможно протекание химической реакции (сольволиза, комплексообразования). Эти ограничения устраняются при использовании второго метода получения гравиметрической формы - переводом элемента, по которому определяется растворимость, в малорастворимое соединение с последующим отделением и доведением до постоянной массы. [c.277]


    Потенциометрическим титрованием называют метод определения концентрации или количества вещества по потенциометрическим кривым титрования (рис. 11.12), которые получают многократным измерением ЭДС цепи после каждого прибавления порции титранта к титруемому раствору, находящемуся в гальваническом элементе, состоящем из индикаторного электрода и электрода сравнения. Титрант добавляют к титруемому раствору малыми порциями (по [c.190]

    Такая цепь называется концентрационной. Зная концентрацию ионов в одном из растворов и измерив э. д. с. гальванического элемента, находят концентрацию этих ионов в другом растворе. На этом основан один из методов определения концентрации водородных ионов. [c.62]

    В теории атомно-абсорбционного метода анализа некоторые теоретические модели рассматриваются на примере элементов с высокой степенью атомизации в пламенах, в частности натрия [845, 1080]. Так, в работе [1080] дается обоснование атомно-абсорбционного метода определения концентрации вещества в пламени без применения стандартных растворов. При расчете концентрации свободных атомов в пламени рассматривают количество вещества, попадающее в пламя в виде аэрозоля, распределение атомов в рабочей зоне, скорость прохождения газов через поглощающий слой. Вычисленные значения величины поглощения света для натрия (меди и серебра) сравнены с экспериментальными. Экспериментальные данные исполь- [c.126]

    Основное направление научных работ —химический анализ с помощью органических соединений. Разрабатывал качественные методы анализа редких элементов. Открыл, что галлий может экстрагироваться из водных растворов соляной кислоты этиловым эфиром. Определил коэффициенты распределения ионов железа и других э.тементов между водной и эфирной фазами. В годы второй мировой войны разрабатывал для армии США способы быстрой идентификации в полевых условиях неизвестных отравляющих веществ. Предложил улучшенный метод определения концентрации иприта в газовой фазе. Исследовал (с 1952) реакции взаимодействия сульфи- [c.452]

    Задачу можно решить, если использовать метод, основанный на определении концентрации элемента в образце путем графической или численной интерполяции между результатами намерений двух ближайших эталонов, один из которых содержит меньше определяемого элемента, а другой больше. Этот метод называют методом интерполяции. [21 ], ограничивающих растворов [8, 16], двух стандартов [16]. ИЮПАК рекомендует термин метод вилки [26]. Мы будем пользоваться этим названием. Метод заключается в следующем. После вывода прибора на стабильный режим работы определяют сигнал на ис- [c.156]


    Метод определения концентрации вещества. При выполнении серийных определений наиболее удобный метод — метод градуировочных кривых. Для построения градуировочного графика окрашивают стандартные растворы с известной концентрацией вещества. Измеряют их оптическую плотность (или процент светопропускания) и строят калибровочный график на миллиметровой бумаге, откладывая по оси абсцисс концентрацию определяемого элемента, а по оси ординат — полученные оптические плотности. [c.27]

    Прежде чем приступить к определению калия и натрия, следует ознакомиться с прибором, порядком работы на нем и техникой безопасности (стр. 97—105). Поскольку определение концентрации элементов этим методом производят путем сравнения показаний отсчетного прибора для испытуемых и эталонных растворов, работу начинают с приготовления последних. [c.250]

    Определение концентрации элемента в растворе методом ААС основано на переведении части образца в атомный пар и измерении поглощения этим паром излучения, характеристического для данного элемента. В качестве атомизатора обычно служит пламя, в качестве источника излучения —лампа с полым катодом, изготовленным из определяемого элемента. Метод отличается высокой избирательностью, большой чувствительностью, дающей возможность работать с малыми навесками [434]. [c.235]

    Интенсивность спектральной линии при постоянных условиях пропорциональна количеству введенных в пламя атомов элемента или концентрации соли металла в анализируемом растворе. Однако в реальных случаях эта зависимость может нарушаться вследствие протекания в пламени процессов самопоглощения, ионизации и образования термически устойчивых соединений. На рис. 1.13 представлена зависимость интенсивности спектральной линии от концентрации элемента в растворе. При средних содержаниях определяемого элемента в растворе эта зависимость линейна. Для больших содержаний сказывается влияние самопоглощения эмиссии атомов в плазме и в этом случае интенсивность излучения спектральной линии пропорциональна корню квадратному, из концентрации элемента в растворе. При очень низких концентрациях элемента и высокой температуре плазмы проявляется процесс ионизации его атомов и интенсивность излучения спектральной линии пропорциональна квадрату концентрации. В обоих случаях градуировочный график искривляется. Кроме процессов, указанных выше, на ход графика влияет ряд других факторов, поэтому определение элементов в методе фотометрии пламени проводят с использованием серии растворов сравнения. Они должны содержать все вещества, входящие в состав исследуемого раствора, и фотометрироваться в одинаковых с ним условиях. [c.37]

    Для изучения влияния марганца и определения содержания натрия и калия в работе используют метод градуировочного графика. С этой целью готовят две серии стандартных растворов, содержащих натрий и калим в возрастающей концентрации. В одну из них вводят также соль марганца в определенной концентрации. Построив по каждой серии градуировочные графики, выражающие зависимость интенсивности излучения (измеренном в делениях шкалы прибора) от концентрации элемента в растворе, сопоставляют результаты определения концентрации натрия и калия в контрольном растворе по этим градуировочным графикам и на этой основе делают выводы о влнянии марганца на результаты определения. [c.161]

    Метод добавок представляет собой разновидность метода сравнения. Определение концентрации раствора этим методом основано на сравнении оптической плотности исследуемого раствора и того же раствора с добавкой известного количества определяемого вещества. Метод добавок, обычно применяют для упрощения работы, для устранения мешающего влияния посторонних примесей, в ряде случаев для оценки правильности методики фотометрического определения. Этот метод позволяет создать одинаковые условия для фотометрирования исследуемого и стандартного (с добавкой) окрашенных растворов, поэтому его целесообразно применять для определения малых количеств различных элементов в присутствии больших количеств посторонних веществ при анализах солевых растворов. Метод добавок требует обязательного соблюдения основного закона светопоглощения. [c.193]

    Дифференциальный метод применяют для повышения воспроизводимости результатов анализа при определении больших количеств веществ, а также для устранения мешающего влияния посторонних компонентов и исключения поглощения реактива. Сущность метода состоит в том, что оптические платности исследуемого и стандартного окрашенных растворов измеряются не по отношению к чистому растворителю с нулевым поглощением, а по отношению к окрашенному раствору определяемого элемента с концентрацией Со, близкой к концентрации исследуемого раствора. [c.199]

    Принцип метода заключается в следующем раствор распыляют с помощью сжатого воздуха в пламя горелки, где происходит ряд сложных процессов, в результате которых образуются атомы или молекулы. Их излучение направляют в спектральный прибор, где излучение определяемого элемента выделяют светофильтрами или другим монохроматором. Попадая на детектор, излучение вызывает фототок, который после усиления измеряют регистрирующим прибором. Градуировочные графики строят в координатах величина фототока (мкА) — концентрация элемента в раство ре с (мкг/мл). Зависимость между интенсивностью излучения / и концентрацией элемента в растворе аппроксимируется прямой линией в определенной для каждого элемента области концентраций и зависит от спектральной линии, аппаратуры и условий работы. Отклонение от линейности наблюдается в области больщих (например, более 100 мкг/мл для калия) и малых концентраций. В первом случае происходит самопоглощение света невозбужденными атомами, во втором — уменьщается доля свободных атомов за счет смещения равновесия реакции ионизации атомов. [c.11]


    Для определения неизвестной концентрации элементов в растворах методом эмиссионной фотометрии пламени необходимы эталоны, химический состав и физические свойства растворов которых должны быть как можно ближе к составу и свойствам анализируемых образцов. [c.15]

    В методе эмиссионной фотометрии пламени рекомендуется несколько способов определения неизвестной концентрации элемента в растворе. Независимо от выбранного способа предварительно устанавливают или проверяют линейность между током и концентрацией. [c.15]

    Определяют неизвестную концентрацию, используя градуировочный график или метод ограничивающих растворов. (Малый угол наклона градуировочного графика на литий указывает на низкую концентрационную чувствительность определения этого элемента с помощью фотометра ФПЛ-1.) [c.23]

    Для определения концентрации (активности) различных ионов в растворе электрометрическим методом на практике используются гальванические элементы, составленные из двух электродов — электрода сравнения с устойчивым и хорошо известным потенциалом и [c.240]

    Анализ основан на зависимости вольт-амперной характеристики гальванического элемента (электрохимической ячейки) от концентрации определяемого компонента в газовой смеси, находящейся в динамическом равновесии с электрохимической системой ячейки и определяющей значение окислительно-восстановн-тельного потенциала раствора электролита и течение электродных процессов. На этой зависимости базируются две группы методов определения концентрации компонентов смесей газов и паров 1) с приложением внешнего поляризующего напряжения к электродам ячейки и 2) без него (с внутренним электролизом). [c.612]

    На первый взгляд, выход из этого положения можно найти, используя уравнение (6.9) сравнением потенциалов водородного, электрода в растворе с точно фиксированным значением рН и в растворе с неизвестной величиной pH. Однако и этот путь не является вполне корректным вследствие погрешностей, привносимых за счет диффузионных потенциалов, возникающих на границе растворов различного ионного состава. В самом деле, при измерении потенциала Ех водородного электрода в растворе с фиксированным значением pH необходимо образовать гальванический элемент водородный электрод — стандартный электрод сравнения. Но тогда потенциал на границе двух электролитов неизбежно входит как слагаемое значение э. д. о. такого элемента. То же самого справедливо и в отношении измерения потенциала водородного электрода в растворе с неизвестным pH относительно того же самого электрода сравнения. Предположение о том, что в обоих случаях диффузионный потенциал совершенно одинаков, в какой-то степени можно допустить только в том случае, когда pH = рН . Такое положение явно не выполняется при всяком ином соотношении между pH стандартного и исследуемого растворов. Таким образом в целом необходимо признать, что, несмотря на широкое использование в самых различных целях потенциометрического метода определения концентрации водородных ионов, мы не распола-лагаем совершенно безупречным способом измерения этой величины. [c.120]

    Арнфельт [340] предложила метод определения урана в растворах, содержащих до 0,001% U и относительно большие количества Fe, V, Сг и других элементов. Метод основан на избирательной сорбции сульфатных комплексов урана из раствора с pH 2 сильноосновным анионитом Дауэкс-2 в 0 -форме. Анализируемый раствор может содержать от 0,02 до 0,4 мг/мл U. Концентрация S0 не должна превышать 75 мг/мл. При этих условиях отмечена частичная сорбция Fe (HI), мешающего конечному спектрофотометрическому определению урана по пероксидной методике. Вследствие этого автор рекомендует вводить в раствор, полученный после десорбции урана соляной кислотой (I 10), вещества, способные замаскировать железо. Тем не менее результаты получались завышенными и ошибка метода составляла +6,5% отн.) Мало внимания уделено поведению ванадия, хрома и др. в условиях опыта, хотя частичная сорбция их анионитом весьма вероятна. [c.321]

    Уоринг и Аннелл [462] описали полуколичественный спектральный метод определения 68 элементов в минералах, горных породах и рудах. Анализируемый материал (10 мг) смешивают с 20 мг чистого графита. Продолжительность горения дуги постоянного тока 60—120 сек. Рядом со спектром анализируемого материала снимают спектр железа и алюминиевого сплава. Эталоны готовят из растворов с концентрацией каждого элемента от 10 до 10 %. Линии 68 элементов, используемые для полуколичественного определения, лежат в интервале 2250—4700 А. Чувствительность определения Ад, А1, Ва, Ве, Си,31,Мд, УЬ— 0,0001% Мо, Мп, В, Ш, Са, Зг, Зс, Ге, Ое, 1п, Т1, ,2г - 0,001% Аи, МЬ, N(1, №, РЬ, С(1, Р(1, Рг, Со, Р1, ВЬ, Ву, Ви, Ей, ЗЬ, Ег, Оа, Зп, Са, Зг, ТЬ, Но, Тш, Ьа, V, Ьи, Ъп — 0,01 % Аз, Ма, Оз, Р, Се, Ке, Зш, Та, НГ, Яg, Те, ТЬ, 1г, Т1, и, и, У-0,1 %. [c.211]

    Колориметрический анализ основан на определении концентрации элемента по интенсивности окраски раствора, оценку которой производят или визуально путем сравнения с эталонным раствором, или с помощью простых оптических приборов — фотометров и колориметров. Воспроизводимость результатов при визуальной колориметрии невысока (5ч=0,1- -0,2). Этот метод в первую очередь представляет интерес при нахождении содержания микропримесей, так как возможно оценить интенсивность окраски раствора малого объема ( 1 мл) находящегося в колориметрической пробирке. [c.33]

    Пламенные фотометры и спектрофотометры (табл. 8) служат для определения концентраций элементов в растворах. Эмиссионный метод заключается в фотометри-ровании пламени, в которое вводится в распыленном виде анализируемый раствор. Атомно-абсорбционный метод основан на изменении интенсивности резопаисной линии спектра за счет поглощения ее энергии атомами определяемого элемента, образующимися в пламени горелки при введении в него распыленного анализируемого раствора. [c.224]

    Метод анализа следов элементов (Тгассе analysis method). Метод употребляется преимущественно при определении концентрации разбавленных растворов, пропускание которых приближается к 100%. В этом случае оптическая плотность (пропускание) измеряется по отношению к растворителю. Нулевой ток (нуль процентов пропускания) балансируют е раствором сравнения, более концентрированным, чем исследуемый образец, в то время как 100% пропускания устанавливают по растворителю. [c.56]

    Точным методом определения концентрации перекиси водорода является измерение температуры замерзания ее чистых водных растворов так, у растворов с высоким содержанием перекиси водорода температура замерзания изменяется приблизительно на Г ira каждый весовой процент состава. Однако этот метод следует рассматривать лишь как специальный в качестве обычного экспериментального метода он ие подходит. В особых условиях использована для открытия перекиси водорода и масс-спектрометрия [105]. Другие физические свойства растворов перекиси водорода применяются очень редко для анализа. Хотя диэлектрическая проницаемость как будто и является удобным показателем концентрации перекиси водорода, но, поскольку кривая диэлектрической проницаемости как функция концентрации обладает максимумом, для ее использования необходимо предварительно знать приближенный состав раствора. Кроме того, этот метод пригоден лишь для анализа чистейших проб, так как уже следы примеси электролитов влияют на электропроводность и таким образом обусловливают ошибки в измерениях [106]. Для определе1шя перекиси водорода предложено также применение гальванических элементов [107]. [c.468]

    Наиболее старые простые колориметрические методы определения следов элементов основаны на измерении интенсивности окраски, вызываемой непосредственно в анализируемом растворе при добавлении соответствующего реактива. В этих методах используются обычные реакции качественного анализа, например реакция трехвалентиого железа с роданидом, титана с перекисью водорода и т. п. Недостатки этих методов общеизвестны. Всестороннее применение их сильно ограничено не только присутствием мешающих элементов, но также оптическими свойствами исследуемых растворов, их собственной окраской, мутностью, присутствием солей в высоких концентрациях и т. п. Разумеется, это относится и к реакциям с органическими реактивами, которые стали все больше проникать в колориметрию. Относительно новыми, но весьма многообещающими колориметрическими методами являются те, в которых производят экстрагирование интенсивно окрашенных продуктов реакции. Для экстрагирования неполярными растворителями особенно пригодны внутрикомплексные соли различных органических реактивов. Часто применяются 8-оксихинолин (для определения железа, алюминия, галлия и ванадия), этилксантогенат калия, диметилглиоксим, [c.183]

    Большая группа ферроцианидных методов определения различных элементов основана на потенциометрических титрованиях с использованием окислительно-восстановительной системы [Fe( N)6l /lFe( N)e] . Появление скачка потенциала в точке эквивалентности обусловлено тем, что пока в растворе присутствует избыток ионов осаждаемого металла, весь вводимый в систед1у ферроциапид связывается в труднорастворимую соль и отношение концентраций [Fe( N)e] /lF6( N)e] остается практически постоянным. Вслед за достижением точки эквивалентности в растворе появляются свободные ионы [Ре(СК)б] , и отношение IFe( N)e] /iFe( N)e] резко изменяется. Таким образом могут определяться катионы лантана и церия [560, 764, 1015], тория [1016, 1239], таллия [896], висмута [1236, 1240], галлия [459, 602, [c.279]

    Приведенные методы определения ряда элементов в веществах высокой чистоты основаны на применении метода амальгамной полярографии с накоплением на микроэлектроде в виде висящей капли ртути. Принцип метода определяемые элементы предварительно концентрируются некоторое время на стационарном микроэлектроде (висящей капле) в перемешиваемом растворе. Образовавшаяся амальгама анодно окисляется при медленно подаваемом линейно изменяющемся напряжении в направлении более положительных потенциалов. Для регистрации анодного тока применяется вектор-полярограф ЦЛА переменного тока. Иа вектоо-полярограмме наблюдаются пики определяемых элементов, высота которых прямо пропорциональна концентрации элементов, а положение [c.203]

    Метод определения Hgl в растворах с концентрацией соли определяемого элемента порядка 2-10 М с применением интегратора непрерывного действия предложен Генином и Россетом [221]. Ошибка определения указанных количеств Hgr не превышает 1 отн.%. [c.24]

    Общепринятой количественной оценкой воспроизводимости служит относительное стандартное отклонение, т. е. отношение (в процентах) абсолютного стандартного отклонения к среднему значению содержания, полученному из ряда измерений. Воспроизводимость данного метода зависит от качества проверки и контроля аналитиком различных этапов анализа. Исследование различных методов определения следов показало, что воспроизводимость меняется в широких пределах. Так, относительное стандартное отклонение оптических спектральных методов, равное 1—3%, можно получить при помощи нлазматрона, используемого для анализа растворов. Стандартное отклонение методов анализа с дугой постоянного тока составляет 15—25%. На воспроизводимость влияют гомогенность пробы, метод введения пробы в разряд, процессы возбуждения и поглощения, стабильность приемников излучения (электронных или фотографических). Различные аналитические методы обладают различной степенью воспроизводимости, причем все методы определения следов элементов имеют общее ограничение по мере приближения к пределу обнаружения величина наблюдаемого сигнала стремится к величинам случайных отклонений этого сигнала. Как правило, относительные отклонения являются наибольшими вблизи предела обнаружения и уменьшаются до минимума при несколько больших концентрациях. Поскольку воспроизводимость определяет точность анализа , интересна в таком случае правильная оценка самой воспроизводимости. [c.20]

    В последнем случае в результате изменения состава раствора в приэлектродном слое каждая следующая осциллоиолярограмма отличается от предыдущей, что затрудняет их применение для целей анализа. Однако, как показал Р. Ш. Нигматуллин [Л. 161], многоцикличный метод может быть в некоторых случаях использован для определения концентрации элементов, восстанавливающихся на твердом электроде без образования осадка. С этой целью он применил метод, при котором подача пилообразного напряжения чередуется с кратковременным выдерживанием электрода при положительном напряжении. [c.128]

    Многие соединения металлов с органическими реагентами сравнительно мало растворяются в воде, но хорошо —в органических растворителях. Например, нерастворимые в воде оксихинолинаты металлов легко растворяются в органических растворителях (бензоле, хлороформе, эфире) и образуют окрашенные растворы. Поэтому для отделения и определения элементов в виде оксихиноли-нлтов (и многих других соединений) их вместо отфильтровывания, высушивания и взвешивания просто экстрагируют и определяют концентрацию элементов, измеряя интенсивность окраски растворов методами фотометрии (см. гл. X). [c.130]

    Химический состав содержащихся в масле твердых загрязнений можно определять лабораторными методами количественного анализа и инструментальными методами. Обычно химические элементы, входящие в состав загрязнений, имеют небольшую концентрацию, что затрудняет применение, например, метода титрования. Для определения в масле содержания железа практическое применение находят главным образом колориметрический или фотоколориметрический методы. Эти методы основаны на способности водных растворов солей железа при реакции с сульфосалициловой кислотой давать окрашенные растворы, имеющие разную оптическую плотность в зависимости от содержания в них железа. [c.34]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Весовой анализ — один из наиболее давно известных, хорошо изученных методов анализа.С помощью весового анализа установлен химический состав большинства веществ. Весовой анализ является основным методом определения атомных весов элементов. Весовой метод анализа имеет ряд недостатков, из которых главные — большие затраты труда и времени иа выполнение определения, а та1сже трудности при определении малых количеств веществ. В настоящее время в практике количественного анализа весовой метод применяют сравнительно редко и стараются заменить его другими методами. Тем не менее весовой анализ используют для определения таких часто встречающихся компонентов, как, например, двуокись кремния, сульфаты и др. Методом весового анализа нередко устанавливают чистоту исходных препаратов, а также концентрацию растворов, применяемых для других методов количественного анализа. Изучение теории весового анализа очень важно также потому, что эти методы применяются для разделения элементов — не только в аналитической химии, но также в технологии, в частности, при выделении редких металлов, при получении чистых препаратов и др. [c.29]


Смотреть страницы где упоминается термин Методы определения концентрации элементов в растворах: [c.455]    [c.455]    [c.91]    [c.13]    [c.122]    [c.314]    [c.186]    [c.171]   
Смотреть главы в:

Практическое руководство по физико-химическим методам анализа -> Методы определения концентрации элементов в растворах




ПОИСК





Смотрите так же термины и статьи:

Концентрация методы определения

Концентрация определение

Концентрация растворов

Концентрация элементов

Методы определения элементов

Элемент, определение



© 2025 chem21.info Реклама на сайте