Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность упаковки изменение при отжиг

    Способность к сорбции низкомолекулярных веществ, в частности растворителей, является важной характеристикой структуры полимера. Процессы сорбции могут быть рассмотрены по аналогии с явлениями растворения или набухания. Однако отличительной особенностью этих процессов является зависимость их от гибкости макромолекул, а также от плотности их упаковки. Неплотная упаковка приводит к появлению более развитой внутренней поверхности полимера, и в этом случае при малых давлениях паров сорбируемых веществ уже не гибкость цепи, а именно неплотность упаковки макромолекул определяет адсорбцию. Изменения структуры полимера при тех или иных воздействиях на него (механических, термических — при отжиге, закалке и т. п.) неизбежно отражаются на плотности упаковки макромолекул и величине сорбции. Образование неплотной упаковки одновременно приводит к изменению межмолекулярного взаимодействия в полимере, так как в зависимости от расположения молекул полимера друг относительно друга число и интенсивность их контактов друг с другом могут изменяться. [c.24]


    Можно утверждать, что в состав межфазных областей, наряду с полиэтиленом, входят и макромолекулы ПВХ. Очевидно, что вынужденное ч растворение двух полимеров с низким сродством друг к другу обусловлено действием на полимерную систему внешнего механического поля (давления со сдвигом). Если учесть мнение, что изменение растворимости компонентов обусловлено изменением энтропийного члена, а, следовательно, и самого равновесного значения энергии Гиббса [10], то очевидно, что такие смеси термодинамически неравновесны. Макромолекулы в таких системах остаются конформационно-напряженными даже в том случае, когда образец выведен из поля действия внешних сил. Таким образом, в процессе разрушения упруго-напряженного материала возможна окклюзия одним полимером другого, приводящая к уменьшению конформационных степеней свободы макромолекул [И]. Более того, принудительное совмещение приводит к взаимному отталкиванию двух несовместимых полимеров, уменьшению плотности упаковки сегментов макромолекул и увеличению внутренней энергии, которая проявляется в дополнительном увеличении скорости деструкции полимера, распадающегося по закону обрамляющих групп. Отжиг таких образцов при температурах, превышаю- [c.250]

    Остановимся теперь на причинах аномального поведения коэффициентов диффузии низкомолекулярных веществ в области высоких степеней кристалличности. Очевидно, что в рамках принятой модели для объяснения этого эффекта следует отказаться от предполон<ения о неизменности свойств аморфной фазы кристаллических полимеров и допустить, что наблюдаемое увеличение О при ср°кр>0,6 обусловлено изменением доли аморфной фазы полимера. В образцах с низкими и средними Ф°кр в силу небольшого объема, занимаемого кристаллитами, их присутствие мало сказывается на структуре и плотности упаковки макромолекул в аморфных участках полимера, а следовательно, и на локальной доле свободного объема, т. е. можно считать, что /(О, 7 )=/ам(0, Т). При увеличении ф°кр кристаллиты начинают заполнять все большую часть объема системы и их перекрывание, столкновение, взаимное влияние чрезвычайно сильно сказывается на состоянии и упаковке молекулярных цепей в аморфных областях [282—284]. Можно полагать, что в этой области степеней кристалличности формируется дисперсная организация кристаллитов, связанная с их определенным взаимным расположением и упаковкой в пространстве, что сказывается на дальнейшем изменении объема тела при вторичной кристаллизации и отжиге. Понимая всю приближенность модельных представлений, изложенных в предыдущем параграфе, тем не менее можно показать, что отклонение диффузионных свойств кристаллических полимеров от зависимости [c.177]


    ИК-анализ свидетельствует о том, что при низких температурах отжига (130 - 210°С) одновременно с увеличением степени кристалличности (новая кристаллизация) увеличивается доля регулярных складок в промежуточной температурной области отжига наблюдается более быстрое увеличение доли сложенных макромолекул, чем рост степени кристалличности (регуляризация складок), а при еще более высокой температуре отжига (250 °С) наступает насыщение процесса складывания или даже некоторое уменьшение, что, скорее всего, объясняется преобладанием процесса увеличения длины складки над процессом регуляризации складок отожженные в свободном состоянии образцы всегда содержат большее количество регулярных складок судя по калориметрическим измерениям, степень кристалличности мало зависит от условий вытяжки и условий отжига большая часть изменения плотности связана с изменением упаковки в кристаллических областях [c.528]

    Эффекты изменения молекулярной подвижности в граничных слоях приводят и к другим структурным изменениям. Прежде всего речь идет о характере молекулярной упаковки молекул в поверхностном слое. Характер упаковки при формировании поверхностного слоя зависит от скоростей протекания релаксационных процессов. Так как уменьшение подвижности означает уменыпение средних времен релаксации в системе, то условия для наиболее плотной упаковки молекул не будут осуществляться и плотность упаковки будет меньшей по сравнению с объемом. Это уменьшение плотности упаковки было показано термодинамическими, сорбционными и другими методами и представляет собой общее явление для всех поверхностных слоев полимеров в отсутствие сильных специфических взаимодействий, т. е. в большинстве практически важных случаев [15]. Таким образом, в результате увеличения времен релаксации формируется менее равновесная структура. Интересно отметить, что путем термообработки наполненных полимеров удается несколько повысить плотность молекулярной упаковки, т. е. уменьшить расстояние между макромолекулами и увеличить взаимодействие между ними. Однако нри этом остается неизменной уменьшенная молекулярная подвижность цепей, о чем можно судить по неизменности положения главного релаксационного перехода после отжига [16]. Это показывает, что увеличение жесткости вследствие конформационных ограничений, накладываемых поверхностью, отражает переход системы к новому состоянию равновесия в присутствии поверхности, отличному от состояния в объеме. Таким образом, в поверхностных слоях при отжиге может происходить сближение макромолекул, приводящее к увеличению плотности молекулярной упаковки без существенного изменения конформаций, число которых ограничено наличием поверхности. [c.180]

    Переход от строения 1 к строению 3 сопровождается значительным понижением температуры стеклования и ударной вязкости с одновременным увеличением плотности и модуля упругости. Гомополимер на основе 1 обнаруживает способность к развитию больших деформаций вплоть до разрушения даже при —180 °С, сополимер 1 и 2 разрушается хрупко практически во всем интервале температур. Низкотемпературное старение иоли-ариленсульфонов (например, при 150 °С) приводит к существенному снижению ударной вязкости и возрастанию модуля упругости, плотность при этом также несколько увеличивается. Сопоставляя показатели механических свойств с плотностью полимеров, авторы [21] делают вывод, что решающим фактором в формировании свойств полиариленсульфонов при изменении изомерного состава звена, а также при старении полимеров данного типа является плотность упаковки макромолекул в монолитном теле. Возможно, что при формировании монолитного тела из полиариленсульфонов так же, как и из других теплостойких ароматических полимеров, макромолекулы принимают неравновесные мета-стабильные конформации. При отжиге вследствие релаксации внутренних напряжений конформации могут несколько изменяться, и макромолекулы упаковываются более плотно. [c.161]

    Подчеркнем, что из исследования электронных спектров поглощения двух электронных переходов молекул- зондов фенантрена, мы получаем новую информацию о структурных изменениях 4,6-полиуретана. Наблюдая в спектрах ИК-поглощения 4,6-полиуретана перечисленные выше изменения колебательных частот уретановых групп макромолекул, мы могли бы отнести эти изменения, например, лишь за счет изменений в распределении электронной плотности в уретановых группах. Однако наблюдаемые сложные изменения в спектрах молекул- зондов — анизотропные изменения — свидетельствуют об изменении в характере упаковки макромолекул (см. выше). В результате можно предполагать изменения либо в структуре уретановых групп макромолекул (искажения валентных углов, появление напряженных структур), либо предполагать, что образуется некоторая новая кристаллическая модификация полимера. В известной в настоящее время литературе по 4,6-полиуретану нет никаких данных в пользу какого-либо из этих предположений. Для 4,6-полиуретана, закристаллизованного и подвергнутого отжигу, согласно [19—21], характерна лишь одна кристаллическая модификация — триклинная паракристаллическая псевдогексагональ-ная структура наблюдается лишь у образцов полимера, подвергнутых закалке [19—20]. Наблюдается ли в нашем случае еще какая-то, ранее не известная кристаллическая модификация 4,6-полиуретана — ответ на этот вопрос, в принципе, могли бы дать рентгенографические исследования кристаллической структуры. Однако, как уже отмечалось, изменения в структуре пленок наблюдаются только когда пленки на подложке присутствие кристаллической подложки является помехой для регистрации рентгенограмм полимера. При отделении же от подложек, пленки испытывают релаксацию, и структура их становится такой же, как у свободных пленок. [c.121]


    В работе [200] рассмотрены результаты исследований методом дифракции рентгеновских лучей на сополимерах этилена, а также рассеяния на образцах иоиомеров полиэтилена с различной степенью отжига. В работе [201] для изучения ближнего порядка в аморфных и кристаллических полимерах были использованы методы дифракции рентгеновского излучения и электронов. Нагревание полиэтилена высокой плотности до температуры плавления сопровождается изменением симметрии макромолекулярной упаковки из орторомбической для кристаллического полимера в гексагональную для расплавленного. [c.74]


Смотреть страницы где упоминается термин Плотность упаковки изменение при отжиг: [c.242]   
Физика макромолекул Том 2 (1979) -- [ c.514 , c.515 , c.516 , c.517 ]




ПОИСК





Смотрите так же термины и статьи:

Отжиг

Плотность изменение



© 2025 chem21.info Реклама на сайте