Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мюллера теория

    Электростатическая теория коагуляции Г. Мюллера. В отличие от адсорбционной теории эта теория исходила из того, что введение электролита в золь не изменяет общего заряда в двойном слое частицы, а вызывает сжатие диффузного слоя. Уменьшение толщины ионной атмосферы приводит к снижению -потенциала, которое может быть вычислено на основе теории сильных электролитов Дебая—Хюккеля. Вследствие снижения -потенциала уменьшается стабильность золя. [c.426]


    В настоящее время при объяснении механизма коагуляции предпочтение отдается электростатическим теориям. Основное положение электростатической теории, впервые высказанной Мюллером, заключается в том, что при введении электролита в золь общий заряд частицы, окруженной двойным электрическим слоем, не уменьшается, но происходит снижение -потенциала, и устойчивость золя благодаря этому нарушается. [c.340]

    Представления Смолуховского объясняют коагуляцию монодисперсных золей. Мюллер разработал подобную же теорию дла объяснения коагуляции полидисперсных систем. Он показал, чтО частицы различных размеров агрегируются всегда скорее, чем одинаковые частицы. При этом большие частицы играют роль как бы- зародышей коагуляции такую же роль могут играть и агрегаты, образующиеся в начальной стадии коагуляций приблизительно, монодисперсного золя золота, как об этом свидетельствуют наблюдения Б. В. Дерягина и Н. М. Кудрявцевой. Впрочем, положения Мюллера полностью верны лишь тогда, когда в золе имеются частицы, существенно превосходящие по размеру малые частицы. Теория Мюллера объясняет автокаталитический характер коагуляции, скорость которой может постепенно возрастать со временем. Мюллер также показал, что коагуляция ускоряется, если частицы имеют удлиненную форму, так как на поступательное броуновское-движение налагается еще вращательное движение, увеличивающее вероятность столкновения таких частиц. [c.266]

    Прибавление электролитов согласно теории снижает не общий заряд коллоидной системы (как это предполагалось в адсорбционной теории), а только величину -потенциала до критического значения (см. рис. 39, стр. 95), при котором золь теряет устойчивость и коагулирует. По изменению толщины диффузного слоя в зависимости от концентрации электролита и валентности ионов были подсчитаны соотношения порогов коагуляции, подтверждающие эмпирическое правило Шульце — Гарди. Несовершенство теории Мюллера состоит в том, что она совсем не учитывает адсорбционный эффект внедрения ионов в штерновский слой и не обосновывает значение критического потенциала (ем. гл. IV, 2, 6). [c.117]

    Отличительной особенностью лиофобных коллоидов является их двойственное отношение к электролитам. Так, присутствие небольших количеств некоторых, потенциалопределяющих ионов в дисперсионной среде является необходимым для придания всей лио-фобной системе агрегативной устойчивости. Но введение в устойчивый золь несколько ббльших количеств низкомолекулярных электро-литовг обычно вызывает сначала медленную, а затем по достижении пороговой, или критической, концентраций быструю коагуляцию золя. Фактически именно подобное поведение какого-либо золя под воздействием электролита считается достаточным, чтобы классифицировать его как лиофобный в отличие от лиофильных коллоидов, для коагуляциц которых необходима высокая концентрация электролита, порядка нескольких молей на литр. Анализ и критика более старых теорий и эмпирических закономерностей Марха, Фрейндлиха, Ленгмюра, Мюллера, Вольфганга Оствальда, Тежака и др., объясняющих потерю лидфоб ыми золями своей агрегативной устой- [c.259]


    Авторами предлагались различные теории коагуляции электролитами. Сюда относятся химическая теория коагуляции (Дюкло), адсорбционная теория (Фрейндлих), электростатическая теория (Мюллер, А. И. Рабинович, В. Д. Каргин). Однако все они по тем или иным причинам утратили свое значение и представляют сейчас только исторический интерес . В настоящее время общепризнанной является физическая теория коагуляции электролитами, базирующаяся на общих принципах статистической физики, теории растворов и теории действия молекулярных сил. Физическая теория [c.289]

    Теория Смолуховского для смесей, содержащих сильно различающиеся по величине частицы, была дополнена Мюллером [79] уточнением условия (1.286) (так как оно соответствует случаю, когда частицы имеют близкие значения радиусов). [c.90]

    Бокрис, Бломгрен и Конвей используют модифицированную изотерму Ленг-мюра, в которой свободная энергия адсорбции является убывающей функцией от поверхностной ко1щептрации, но не в первой степени, как в теории Фрумкина, а в степени, отличной от единицы. Бокрис, Деваггатхан и Мюллер учитывают конкуренцию за место в двойном слое И ежду молекулами воды и органического вещества, подчеркивая роль ориентации диполей воды на поверхности раздела, зависящую от ее заряда. [c.248]

    Теория Мюллера не учитывала адсорбцию введенных ионов и их вхождение в структуру двойного слоя. [c.426]

    В теории Смолуховского рассмотрена коагуляция моно-дисперсных систем. Оценка влияния полидисперсностн на скорость коагуляции проведена Мюллером на примере бидисперсной системы, содержащей частицы размером и в количестве N0 и Пд. Теория основана на тех же положениях, что и теория коагуляции монодисперсных систем. [c.159]

    Снижение -потенциала обусловлено сжатием диффузионного слоя, уменьшением толщины ионной атмосферы под влиянием электростатического воздействия ионов введенного электролита и может быть вычислено из теории сильных электролитов Дебая — Гюккеля. Мюллер, учитывая только электростатические взаимодействия, путем расчетов пришел к обоснованию правила Шульце — Гарди и к зависимости между снижением -потенциала и концентрацией прибавляемого электролита. Однако ряд явлений не получил удовлетворительного объяснения электростатической теорией. Экспериментальный материал, полученный различными исследователями, убедительно доказывал, что коагуляция лиофобных коллоидов электролитами сопровождается адсорбцией ионов-коагуляторов, причем в большинстве случаев эта адсорбция носит обменный характер. Ионы-коагуляторы адсорбируются, вытесняя одновременно из двойного слоя в жидкость одноименно заряженные ионы, образующие наружную обкладку. [c.340]

    Электростатическая теория коагуляции основана на учете изменений двойного электрического слоя коллоидной частицы (Мюллер). Изучая коагуляцию, вводят понятие о критическом потенциале, выше которого система сравнительно устойчива,, ниже — золь теряет стабильность и быстро коагулирует. Например, критический потенциал золя АзгЗз равен 26 мв, эмульсии масла — 30 мв и т. п. [c.117]

    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    Существует ряд теорий коагуляции, пытающихся объяснить ее только явлениями адсорбции (Фрейндлих) или только электростатическим сжатием двойного слоя (Мюллер), однако из сказанного следует, что теория не может иметь такого одно- [c.139]

    Дальнейшее развитие теории двойного электрического слоя было дано в работах Фрумкина и его школы, Бокриса, Деванатхана, Есина, Мюллера, Парсонса, Эршлера и др. Наибольшее признание и распространение получила модель двойного электрического слоя, предложенная Грэмом (1947). Согласно Грэму, обкладка двойного электрического слоя, находящаяся в растворе, состоит не из двух, как предполагал Штерн, а из трех частей. Первая, считая от поверхности металла, называется внутренней плоскостью Гельмгольца, в ней находятся лишь поверхностно-активные ноны либо если их нет в растворе, молекулы растворителя-. В первом случае заряд плоскости равен <71, во втором — нулю ( 71 = 0), потенциал ее, отнесенный к раствору, обозначается ч( рез г 5). Следующая, удаленная от поверхности металла на расстояние, до которого могут подходить ионы (центры их заряда) в процессе теплового движения, называется внешней плоскостью Гельмгольца ее общий заряд, отнесенный к единице поверхности, равен /2, а потенциал плоскости -фг- [c.271]


    Теории перенапряжения различаются между собой по тому, какая из указанных стадий считается наиболее медленной, а следовательно, и лимитирующей скорость общего электрохимического процесса. Так, наименьшей скоростью по Мюллеру является скорость последней стадии (образование и выделение газообразной фазы) по Леблану — стадии дегидратации по Смитсу— стадии разряда ионов по Тафелю — процесса молизации по Нернсту — стадии адсорбции. [c.622]

    Количественная теория кинетики коагуляции была развита в трудах М. Смолуховского, Г. Мюллера, Н. А. Фукса и других ученых. Смолуховским была рассмотрена кинетика коагуляции моиодисперсных золей со сферическими частицами, которые стал- [c.278]

    Необходимо отметить, что теория кинетики быстрой коагуляции Смолуховского была блестяще экспериментально подтверждена Зигмонди, а затем и другими учеными, несмотря на некоторые ее допущения. Теория исходит из того, что золь имеет сферические монодисперсные чястипы. хотя на практ(1ке это встречается очень редко. РСршгеГтого, делается предположение, что монодисперсность приблизительно сохраняется и во время коагуляции. Теория быстрой коагуляции полидисперсных золей была развита Мюллером, она является продолжением теории Смолуховского. Основной вывод этой теории, подтвержденный экспериментально, заключается в том, что сильно полидисперсные системы коагулируют быстрее, чем монодисперсные. Крупные частицы выступают в роли зародышей коагуляции в их присутствии маленькие частицы исчезают быстрее, чем в их отсутствие. Теория Мюллера объяснила и некоторое возрастание скорости коагуляции в моиодисперсных золях вследствие увеличения их полидисперсности в ходе коагуляции-Мюллером было также показано, что частицы в форме листочков коагулируют с такой же скоростью, что и сферические. В то же время частицы, имеющие форму палочек, должны коагулировать быстрее. [c.283]

    Как уже упоминалось, Мюллер, уточнив условие (7.20), дополнил теорию Смолуховского для случая дисперсных систем, частицы которых сильно различаются по размерам. Положим Дг/ = О О/ и Ri = Гс Г/. Принимая во внимание зависимость О 1/г, т. е. Ос = =01Г1 Г(, для произведения D , Ri получим более точное выражение [c.206]

    Наконец, следует отметить, что скорость коагуляции увеличивается при перемешивании раствора и при седиментации (ортоки-нетическая коагуляция). Согласно теории, разработанной Смолуховским, Туорилой и Мюллером, вследствие наложения на броу- [c.207]

    После первой мировой войны 1914—1918 гг. появляются работы представителей других стран — таких, как США, Голландия, Швеция и позднее Япония, а также Советского Союза работа Штерна по теории двойного слоя, работы Мюллера, Рут-герса, Кройта, Комагата, Овербека, Рабиновича, Уайта, Булла, Мак Бэна, А. И. Фрумкина, И. И. Жукова и его учеников. После второй мировой войны имеется некоторый спад по количеству специальных работ в этой области, и лишь в последние годы число научных статей опять возрастает, причем наиболее интенсивную работу ведут Советский Союз, США, Англия и Голландия. [c.13]

    Г. Мюллер распространил теорию на случаи коагуляции полидисперсных систем и систем с палочкообразными и пластинчатыми частицами. В соответствии с теорией Мюллера в полидисперсных системах коагуляция протекает быстрее, чем предсказывает теория Смолуховского. Отклонение форм частиц от сферической также способствует повышению скорости коагуляции, так как, кроме поступательного броуновского движения, к столкновениям приводит вращательное броуновское движение. Теоретические предположения Мюллера экспериментально подтверждаются работами Вигнера, Туорила, Маршала. [c.109]

    Адсорбционная теория (Фрейндлих) объясняла снижение заряда процессом адсорбции ионов. Согласно электростатической теории (Мюллер), увеличение с приводит, при постоянном заряде, к снижению -потенциала, а следовательно и устойчивости системы. Теория Рабиновича рассматривала совместное действие ионного обмена и снижение -потенциала. В теории, развитой Оствальдом, коагуляция рассматривалась как вытеснение дисперсной фазы межионными силами притяжения, действующими в дисперсионной среде (сжатие динамической ионной решетки ), В этом представлении параметром, определяющим коагуляцию, является величина коэффициента активности электролита. [c.247]

    В работе Орра использовано более совершенное выражение лля Udis, основанное на квантово-механических приближениях теории Кирквуда — Мюллера [c.135]

    Современная количественная теория коагулирующего действия электролитов развита Б. В. Дерягиным при участии Л. Д. Ландау (в 1935—1941 гг.) и позже, независимо, в работах голландских физи-кохимиков Фервея и Овербека. Теория ДЛФО основана на сопоставлении межмолекулярных взаимодействий частиц дисперсной фазы в дисперсионной среде, электростатического взаимодействия диффузных ионных слоев и (в простейшем варианте теории качественно) теплового броуновского движения частиц дисперсной фазы. Эта теория обобщила и развила на строгой количественной основе представления о так называемой электростатической устойчивости золей, использованные в работах Мюллера, Рабиновича, Каргина. [c.297]

    В эксперимсп льном изучении и длите о>ной оживленной дискуссии о причинах стабилизации гидрофобных золей участвовали Г. Шульце и У. Гарди, Г. Мюллер, Г. Фрейндлих, Г. Кройт, А. И. Рабинович и др. В работах Б. В. Дерягина и сотр. были сформулированы представления об основном термодинамическом факторе устойчивости коллоидных систем—расклинивающем давлении в тонких слоях жидкости и о главных его составляющих. Б. В. Дерягиным совместно с Л. Д. Ландау была создана современная теория устойчнвоств в коагуляции лиофобных золей электролитами независимо и несколько позднее эта теория была развита Е. Фервеем и Дж. Овербеком. [c.13]

    В 1917 г. Н. П. Песков в г. Иванове ввел понятия агрегатив-ная и седиментацнонная устойчивость. Первое понятие подразумевает устойчивость частиц золей к агрегации — слипанию друг с другом. Было предложено много теорий, объясняющих агрегативную устойчивость. Среди них особенно большое значение получила теория двойного электрического слоя, впервые высказанная Г. Гельмгольцем еще в 1879 г. Ему же принадлежит понятие дзета-потенциала (потенциала двойного электрического слоя). Немецкий химнк Г. Мюллер в 1928 г. высказал мысль, что мицеллы (коллоидные частицы) представляют собой образования, состоящие из частицы (золя), окруженной диффузной, атмосферой ионов, несущих заряд, обратный по знаку заряду протнвоионов. [c.255]


Библиография для Мюллера теория: [c.212]    [c.138]   
Смотреть страницы где упоминается термин Мюллера теория: [c.210]    [c.98]    [c.206]    [c.256]    [c.459]    [c.111]    [c.142]    [c.459]   
Физико-химия коллоидов (1948) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Мюллера



© 2024 chem21.info Реклама на сайте