Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение теории

    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]


    В соответствии с приведенными крайними случаями в настоящее время имеются две основные теории водородного перенапряжения теория замедленной рекомбинации и теория замедленного разряда. Здесь же следует заметить, что концентрационная поляризация при катодном выделении водорода в кислой среде вследствие большой подвижности ионов водорода и возможности перемещивания электролита газовыми пузырьками незначительна. При катодном выделении водорода из щелочных растворов концентрационная поляризация должна быть тоже небольшой из-за высокой концентрации разряжающихся молекул воды. В нейтральной среде все же наряду с перенапряжением приходится считаться и с концентрационной поляризацией. [c.329]

    Впервые теория электрохимического перенапряжения (теория замедленного разряда) была предложена применительно к катодному [c.335]

    Более подробно теория перенапряжения изложена в учебниках физической химии. [c.431]

    Теория диффузионного перенапряжения без учета конвекции [c.303]

    Теория диффузионного перенапряжения с учетом конвективной диффузии [c.311]

    Основы теории реакционного (химического) перенапряжения [c.324]

    Величина бр использовалась в первоначальной теории гомогенного реакционного перенапряжения в том смысле, в каком диффузионный слой б использовался в теории диффузионного перенапряжения. [c.327]

    ОСНОВЫ ТЕОРИИ ЭЛЕКТРОХИМИЧЕСКОГО ПЕРЕНАПРЯЖЕНИЯ [c.347]

    Теория электрохимического перенапряжения относилась первоначально к тому случаю, когда можно было пренебречь тонкой структурой двойного слоя и не учитывать распределения потенциала между его плотной и диффузной частями. Это допущение оправдывается (с наибольшей полнотой — в области малых перенапряжений), если выполнены следующие условия. [c.347]

    В первоначальном варианте теории электрохимического перенапряжения не учитывалась возможность различия между природой частиц, непосредственно участвующих в элементарном электрохимическом акте, и природой частиц, представляющих собой исходные и конечные продукты электрохимической реакции. Пусть акту разряда отвечает уравнение [c.347]

    Действительный механизм катодного выделения водорода на каждом данном металле удается установить на основании всесторонних экспериментальных исследований и их сопоставления с выводами, вытекающими из теории возникновения различных видов перенапряжения. [c.406]

    Из уравнений (19.30) и (19.26) для скорости рекомбинации с учетом (19.28) вытекает следующее выражение для водородного перенапряжения в рамках теории замедленной рекомбинации  [c.410]

    По теории замедленной рекомбинации перенапряжение не должно зависеть от pH раствора [см. уравнение (19.31)], хотя некоторое, весьма незначительное влияние pH может быть обнаружено в связи с дипольным характером связи М—Н. [c.411]


    Эти общие заключения о природе перенапряжения на разных металлах подтверждаются в общих чертах соответствием между наиболее важными следствиями из теории перенапряжения водорода и данными, полученными при экспериментальном изучении кинетики выделения водорода. Так, на поверхности ртути в области потенциалов катодного выделения водорода ни одним из методов не удается обнаружить заметных следов адсорбированного атомарного водорода. Следовательно, стадия его удаления не является лимитирующей. Предлогарифмический коэффициент Ь на ртути близок к 0,12. При учете ничтожно малого заполнения поверхности ртутного катода адсорбированным атомарным водородом такое значение величины Ь не может быть получено из теории замедленной рекомбинации. Экспериментальные данные по влиянию состава раствора и pH на перенапряжение при выделении водорода на ртути также лучше всего согласуются с предположением о замедленности разряда на свободных участках катода. [c.413]

    Поведение металлов в процессе анодного растворения исследовано не так полно, как при их катодном осаждении. Все же по-.лученные опытные данные подтверждают применимость основных положений теории электрохимического перенапряжения к металлам группы железа. Так, кинетика анодного растворения железа и никеля описывается формулой Тафеля [c.477]

    Теории водородного перенапряжения 621 [c.621]

    Теории водородного перенапряжения [c.621]

    Критерием правильности той или другой теории являются опытные факты, поэтому, естественно, справедливость той или иной теории перенапряжения определяется возможностью на основе этой теории объяснить формулу Тафеля, основанную на экспериментальном материале. Однако все основные теории приводят при известных предположениях к формуле Тафеля. [c.622]

    Рекомбинационная теория. Длительное время наибольшим признанием пользовалась рекомбинационная теория перенапряжения, выдвинутая Тафелем еще в 1905 г. Согласно этой теории, наиболее медленной является стадия молизации адсорбированного водорода, поэтому в процессе электролиза концентрация атомного водорода на поверхности увеличивается по сравнению с равновесной с молекулярным водородом (газ), что и приводит к сдвигу потенциала электрода в отрицательную сторону. [c.622]

    Теории водородного перенапряжения 623 [c.623]

    В рекомбинационной теории впервые было объяснено влияние материала электрода на величину перенапряжения водорода. [c.624]

    Теории водородного перенапряжения 625 [c.625]

    Теория медленного разряда в том виде, в каком она была изложена Фольмером, не учитывала строения границы электрод — раствор, потому не могла объяснить влияния состава электролита на величину водородного перенапряжения. Влияние строения двойного электрического слоя на кинетику электрохимических реакций впервые было принято во внимание [c.627]

    Д. Вермильеа [151] обобщил теоретические взгляды на процесс электролитического роста грани кристалла на основе теории дислокаций, количественно рассмотрев различные типичные случаи. При малой поверхностной энергии металла гладкая вначале поверхность должна в ходе электроосаждения металла становиться шероховатой. Если на гладкой поверхности имеются выходы осей винтовых дислокаций и ступени растут по спирали, а средний путь свободного пробега атома на поверхности много больше расстояния между ступенями (между витками спирали), то выделение атома металла может происходить в любой точке новерхности. Адсорбированные атомы при этом должны диффундировать к ступеням роста для вхождения в решетку. Коэффициенты полученной зависимости силы катодного тока от перенапряжения определяются как порядком величины перенапряжения, так и другими факторами (поверхностной энергией, равновесной концентрацией и временем жизни адсорбированного атома на поверхности II пр.) Для металлов с относительно высоким перенапряжением теория дислокаций дает ту же известную из опыта экспоненциальную зависимость тока от потенциала (формулу Тафеля), что и теория замедленного разряда, так как плотность дислокаций является функцией потенциала электрода [151, 152]. Теория предсказывает и возникновение неустойчивого состояния в начале электроосажде-шгя. Это состояние связано с превращением линейных дислокаций в спиральные и должно проявляться в повьшген-ном перенапряжении в первый момент электроосаждения [c.82]

    Для объяснения явления перенапряжения предложен ряд теорий. Так, перенапряжение водорода может быть объяснено запа, дыванием процессов соединения электронейтральных атомов водорода, образующихся при разряде Н+-ионов, в молекулы Нп и последующего отрыва пузырьков газа от поверхности электрода. Согласно более новой теории, разработанной академиком А. Н. Фрумкиным, детально исследовавшим явления перенапряжения, оно объясняется запаздыванием процесса разряда ионов водорода .  [c.431]

    В первой количественной теории диффузионного перенапряжения, создаипой главным образом Нернстом и Бруннером на рубеже XIX и XX столетий (1888—1904), учитывается лишь миграция ионов и их диффузия. В теории Нернста — Бруннера предполагается, что все изменение состава электролита сосре.шточено в узком слое раствора, примыкающем к электроду,— в диффузионном слое б. Этот слой [c.303]


    Си, так как рассматривается катод гый -процесс). Таким образом, градиент концентрации, определяющий скорость диффузии, равен (с о—Ск)/б. Наконец, в этой теории принимается, что концентрации и активности совпадают (хотя это предположение и не делалось ее авторами, поскольку в те годы еще не существовало понятия активности) и что числа нерепоса не зависят от состава раствора. Последнее допущение оправдывается лищь в случае растворов, содержащих бинарный электролит, подвижности ионов которого почти одинаковы. Основные положения теории диффузионного перенапряжения Нернста—Бруннера целесообразно рассмотреть поэтому на примере системы [c.304]

    Несмотря на недостатки теории Нернста—Бруннера (невозмож-лссть теоретического расчета предельной плотности тока, физическая несостоятельность модели диффузионного слоя), потребовалось почти сорок лет для создания новой, более совершенной теории диффузионного перенапряжения. Успехи в этом направлении были, до тигнуты благодаря применению к явлениям диффузии основных положений тепло- и массопередачи, в частности законов гидродии , [c.311]

    Начало выяснения природы процессов, лежащих в основе обнаруженных закономерностей, было положено работами чешской школы полярографистов Брдичкой (1943), Брдичкой и Визнером, Брдичкой и Коутецким (1947) и др., а также Делагеем с сотр. (1952). В этих работах, развитых впоследствии Феттером и Геришером (1952), была показана необходимость учета роли чисто химических превращений в кинетике эл Зктродных процессов и заложены основы теории химического Лх или, как его чаще называют, реакционного т] перенапряжения. Оказалось, что во многих электродных процессах замедленной может оказаться именно химическая реакция, что и приводит к появлению реакционного перенапряжения. Рассмотрим некоторые типичные примеры электродных процессов, в слючаюпи1х в себя стадии. химического превращения. [c.320]

    Первая иоиытка количественного оформления теории замедленного разряда была предпринята Эрдей-Грузом и Фольмером в 1930 г., хотя некоторые ее положения уже содержались в работах Батлера (1924) и Одюбера (1924). Эрдей-Груз и Фольмер вывели формулу, связывающую потенциал электрода иод током с плотностью тока. Выведенная ими формула является основным уравнением электрохимического перенапряжения и согласуется с эмпирическим уравнением для перенапряжения водорода. Однако теория замедленного разряда в ее первоначальном виде содержала ряд недостаточно обоснованных допущений и не могла удовлетворительно описать всю совокупность опытных данных. Наибольший вклад в теорию замедленного разряда был внесен А. Н. Фрумкиным (1933), который впервые учел влияние строения двойного электрического слоя на кинетику электрохимических процессов. Его идеи во многом определили основное направление развития электрохимической науки и ее современное состояние. [c.345]

    Теория электрохимического перенапряжения была разработана применительно к процессу катодного выделения водорода, а затем распространена на другие электродные процессы. Основой этой теории служит классическое учение о кинетике гетерогенных химических реакций. Количественные соотношения между величиной перенапряжения г и плотностью тока / были получены при использовании принципа Бренстеда о параллелизме между энергией активации 7а и тепловым эффектом <3р (или изобарным потенциалом АО) в ряду аналогичных реакций. Квантовомеханическая трактовка электродных процессов начала формироваться лишь сравнительно недавно, хотя отдельные попытки в этом направлении предпринимались уже начиная с середины 30-х годов (Герни, О. А. Есин и др.). Основные исследования в этом направлении были выполнены Бокрисом, Догонадзе, Христовым и др. [c.346]

    Любая из стадий каждого из челырех вариантов может быть замедленной и определять скорость всей реакции. Чтобы сделать выбор между этими теоретически во. шожными случаями и установить действительные причины кислородного перенапряжения, следует воспользоваться критериями, вытекающими из общей теории кинетики электродных процессов. Одним из таких критериев может служить величина наклона полулогарифмических прямых. Как следует из табл. 20.1, наклон Ь при выделении кислорода изменяется в очень широких пределах, принимая, в зависимости от материала анода и состава раствора, следующие значения  [c.425]

    Можно предположить поэтому, что кинетика всего процесса определяется скоростью чисто электрохимических стадий разрядом молекул воды в кислых растворах и разрядом ндроксид-иопов в щелочных. С теорией замедленного разряда А. Н. Фрумкина согласуется также и характер влияния состава расгвора на перенапряжение кислорода в рассматриваемых двух случаях. [c.426]

    Появление оксида на иоверхности металла изменяет строение двойного электрического слоя. В этом случае его уже нельзя представить простой моделью Штерна — Грэма, которая использовалась ири создании теории водородного перенапряжения. В этом случае, по Гэру и Ланге (1958 , к падению потенциала в гельмгольцевской и диффузной частях дво1И1ого слоя, учитываемых в модели Штерна Грэма, следует добавить падеиие потенциала в слое оксида (рис. [c.427]

    Многие исследователи пытались усовершенствовать теорию электровыделения металлов, привлекая представления об электронном строении их ионов. Одна из та <пх попыток принадлежит Лайонсу (1954). По Лайонсу, величина металлического перенапряжения зависит от характера электронных структур разряжающихся ионов и выделившегося на катоде металла. При этом перенапряжение будет особенно большим в двух случаях. Во-иервых, если аквакомплексы (илн иные комплексы) образованы нонами за счет электронов, находящихся на внутреннн>. орбитах (внутрнорбитальпые комплексы), благодаря чему создаются наиболее прочные связи ионов в растворе. Во-вторых, если велика разница в электронных структурах иона и металла в этом случае требуется значительная энергия активации для их перестройки в процессе разряда. Разря- [c.466]

    Изучению водородного перенапряжения посаяшепо особенно много работ, имеетея несколько теорий для объяснения этого явления, [c.621]

    Теории перенапряжения различаются между собой по тому, какая из указанных стадий считается наиболее медленной, а следовательно, и лимитирующей скорость общего электрохимического процесса. Так, наименьшей скоростью по Мюллеру является скорость последней стадии (образование и выделение газообразной фазы) по Леблану — стадии дегидратации по Смитсу— стадии разряда ионов по Тафелю — процесса молизации по Нернсту — стадии адсорбции. [c.622]


Смотреть страницы где упоминается термин Перенапряжение теории: [c.290]    [c.311]    [c.319]    [c.374]    [c.624]   
Физическая химия (1980) -- [ c.386 ]

Теоретическая электрохимия (1965) -- [ c.0 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.0 ]

Физическая химия Том 2 (1936) -- [ c.423 ]




ПОИСК





Смотрите так же термины и статьи:

Гейровского теория водородного перенапряжения

Двойной электрический, слои. Адсорбция на границе металл—раствор Общие вопросы электрохимической кинетики и теория водородного перенапряжения

Дебая Хюккеля теория при перенапряжении

Критерии справедливости теорий водородного перенапряжения

Основы теории перенапряжения кристаллизации

Основы теории химического (реакционного) перенапряжения

Основы теории электрохимического перенапряжения

Перенапряжение

Перенапряжение водорода Теория перенапряжения

Перенапряжение водорода теории возникновения

Перенапряжение рекомбинационная теория

Перенапряжение теория замедленности стадии разряда

Поланьи теория перенапряжения

Развитие теории перенапряжения металлов

ТЕОРИЯ ПЕРЕНАПРЯЖЕНИЯ Постановка вопроса

Тафель перенапряжение перенапряжения теория

Теории водородного перенапряжения

Теория диффузионного перенапряжения без учета конвекции

Теория перенапряжения Перенапряжение при выделении водорода

Теория перенапряжения водорода

Теория перенапряжения выделения водорода

Теория электрохимического перенапряжения, учитывающая структуру двойного слоя

Фаулер взаимодействие ионов теория перенапряжения

Фольмер перенапряжение теория проявления фотохимическое разложение

Фрумкина Теория перенапряжения восстановления водород

Хомутов. Перенапряжение водорода и мультиплетная теория катализа А. А. Баландина

теория диффузионных потенциалов теория перенапряжения теплоемкость

теория диффузионных потенциалов теория перенапряжения теплоемкость алмаза и графита теплоемкость алюминия теплоемкость аммиака теплоемкость меди теплоемкость

теория диффузионных потенциалов теория перенапряжения теплоемкость начало термодинамики

теория диффузионных потенциалов теория перенапряжения теплоемкость плавикового шпата теплоемкость серы теплоемкость хлористого калия

теория диффузионных потенциалов теория перенапряжения теплоемкость теплоты разбавления третье

теория диффузионных потенциалов теория перенапряжения теплоемкость упругость пара фазовые цепи формула теплоемкости



© 2025 chem21.info Реклама на сайте