Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка и деасфальтизация

    Производственные технологические и другие показатели вторич- ных процессов риформинга, каталитического крекинга, термического крекинга, пиролиза, селективной очистки, деасфальтизации  [c.27]

    Дистилляты средней вязкости обычно очищают фурфуролом, при этом получают высокий выход масел. Для очистки остаточных продуктов чаще всего применяют фенол, хотя не исключается и использование фурфурола. Для очистки сырья, содержащего большое количество смол, рекомендуется смесь фенола с крезолом и пропаном или применение перед селективной очисткой деасфальтизации. [c.307]


    Экстракторы — аппараты для разделения жидких или твердых веществ с помощью избирательных растворителей. Экстракторы применяются в различных отраслях промышленности и, в частности, в нефтепереработке при производстве масел (селективная очистка, деасфальтизация), очистке нефтепродуктов, извлечении ароматических углеводородов из легких нефтяных фракций. [c.551]

    Потенциальное содержание дистиллятных и остаточных масел в мазуте определяют делением его на фракции депарафинизацией избирательными растворителями, деасфальтизацией, адсорбционной очисткой на силикагеле с последующим смешением получаемых фракций. Для остатков (гудрона) по кривым качества нахо- [c.35]

    Деасфальтизация Селективная очистка Депарафинизация кристаллизацией [c.209]

    После деасфальтизации и селективной очистки в дистиллят — ных и остаточных рафинатах остаются все типы высокомолекуляр — [c.249]

    Основные требования безопасности и безаварийной работы установок очистки светлых нефтепродуктов те же, что и для первичной деструктивной переработки нефти. В ПТБ НП-73 определены дополнительные требования, связанные с применением щелочей и кислот, которые не способствуют взрывам и пожарам, но могут привести к травмированию людей. Ниже рассмотрены дополнительные требования к эксплуатации установок очистки масляных дистиллятов и деасфальтизации гудрона жидким пропаном. [c.91]

    Линии I - сырье - деасфальтированный гудрон II - добавочный водород П1 — вода IV - углеводородные газы V - сероводород VI - аммиак VII — вода на очистку уш- фракция н. к. - 180°С IX - фракция 180-350°С X - остаток выше 35О С XI — растворитель на блок деасфальтизации. [c.175]

    Кристаллическая структура остаточных продуктов, так же как и дистиллятных, зависит от степени их очистки, но эта зависимость для первых выражена значительно более резко. Последнее обусловливается тем, что при очистке в значительно большей мере изменяется состав остаточных продуктов, чем дистиллятных. На фракционном составе и свойствах остаточных продуктов значительно сказывается деасфальтизация пропаном, поскольку при деасфальтизации компоненты разделяются не только по химической природе, но в значительной мере и по молекулярному весу. При этом наиболее высокомолекулярные компоненты переходят в остаток от деасфальтизации, т. е. в асфальт, вследствие чего деасфальтируемый продукт может освободиться от некоторой [c.33]

    Кроме того, при деасфальтизации и очистке, особенно очистке избирательными растворителями, можно в значительной мере удалить из остаточных продуктов активные вещества, влияющие на кристаллическую структуру твердых углеводородов. Это тоже способствует изменению кристаллической структуры остаточных продуктов при их деасфальтизации и очистке. [c.34]


    При применении процесса пропановой депарафинизации к переработке остаточных продуктов можно создать комбинированные установки, на которых в растворе пропана будет проводиться полная переработка масляного сырья до получения целевого масла с включением процессов деасфальтизации, очистки растворителями, депарафинизации и доочистки адсорбентом. [c.178]

    На установках деасфальтизации довольно большой расход водяного пара, причем предусмотрена проверка чистоты его конденсата, поскольку при недостаточной плотности соединений в испарителях или подогревателях растворы, находясь под более высоким давлением, могут проникать в зоны конденсации водяного пара. На многих установках имеется колонна щелочной очистки от сероводорода паров технического пропана, выходящих из конденсатора смешения 28. [c.66]

    Во избежание заноса капель битума деасфальтизации в конденсатор-холодильник 7 выходящие из сепаратора 24 пары пропана обычно пропускаются через горизонтальный цилиндрический каплеотбойник. Для удаления сероводорода часть паров пропана проходит через колонну, заполненную водным раствором щелочи (каплеотбойник и колонна щелочной очистки на схеме не показаны). [c.68]

    Установка очистки нефтяных остатков парными растворителями без предварительной деасфальтизации сырья [c.77]

    РИС. У И-3. Технологическая схема установки для очистки нефтяных остатков парными растворителями без предварительной деасфальтизации сырья  [c.79]

    Одно из основных направлений технического прогресса в нефтеперерабатывающей и нефтехимической промышленности — строительство высокопроизводительных комбинированных установок. Высокие технико-экономические показатели достигнуты при эксплуатации отечественных комбинированных установок глубокой переработки нефти (ГК-3), производства топлив (ЛК-6у), установок деасфальтизации и селективной очистки масел, депарафинизации масел и обезмасливания парафинов. Готовятся к пуску отечественные комбинированные маслоблоки КМ-1 и КМ-2, комбинированные установки глубокой переработки нефти КТ-1 и производства ароматических углеводородов и др. [1—5]. [c.118]

    Деасфальтизация пропаном. Соединения асфальтового характера имеют очень высокий молекулярный вес и концентрируются в тех остатках, которые имеют такую высокую температуру кипения, что не могут быть выделены дистилляцией. Вещества смолистого характера имеют молекулярный вес несколько ниже и находятся как в масляных дистиллятах, так и в мазуте. Асфальты и смолы часто в промышленности выделяются из масла отгоном более летучих веществ, и этот процесс экономичен, если сырье содержит незначительное количество ценных высокомолекулярных углеводородов, которые не могут быть отогнаны. Однако во многих случаях желательно в дальнейшей переработке этих остатков получить вязкие масляные дистилляты или тяжелое сырье для каталитического крекинга. Общепринятая сольвентная очистка одним растворителем непригодна, и применяется деасфальтизация пропаном или дуосол-процесс, в котором также используется пропан.  [c.285]

    Асфальтовые или смолистые ингредиенты можно также удалить из масляных дистиллятов адсорбцией или обработкой серной кислотой с разбавителем или без него. После деасфальтизации пропаном сольвентную очистку одним растворителем можно использовать для дальнейшего улучшения качества масла. [c.285]

    Основным сырьем для производства битумов в нашей стране являются остаточные продукты нефтепереработки гудроны, асфальты деасфальтизации, экстракты селективной очистки масляных фракций. Использование природных битумов крайне незначительно. [c.6]

    На основе низковязких асфальтов битумы можно получить по первому, третьему н четвертому способам переработки. При этом первый способ обеспечивает получение битумов только марок БН, но сырье в данном случае состоит на 100% из асфальта деасфальтизации (см. табл. 16, рис. 65). По третьему способу переработки для получения битумов БН в состав сырья окисления можно вовлекать до 50% асфальта, а для получения битумов БНД — до 30%. Для четвертого способа в качестве разбавителя рекомендуется гудрон с условной вязкостью при 80 °С 20—40 с или экстракт селективной очистки масел доля асфальта в конечном продукте — битуме марок БНД — составляет здесь 25—50% при использовании гудрона и 50—70% при использовании экстракта [145, 148]. [c.103]

    Экстракторы применяют на установках, где компоненты сырья для битумного производства получаются как побочная продукция. Непосредственно на битумных установках с целью производства битумов их не применяют. Подробно экстракторы описаны в литературе, посвященной процессам деасфальтизации остатков перегонки и селективной очистки масляных фракций [204—205]. [c.138]

    За последние годы в технологию производства масел все больше внедряются процессы гидроочистки взамен селективной очистки и обработки отбеливающими глинами. Таким способом получают дистиллятные масла (легкие и средние индустриальные, автотракторные и др.). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуются деасфальтизат и асфальт. Деасфальтизат подвергают дальнейшей обработке, подобно масляным дистиллятам, а асфальт перерабатывают в битум или кокс. [c.152]


    Вместе с тем, наряду со старыми методами кислотно-контактной очистки традиционных масел этой нефти применяется также современный процесс деасфальтизации для получения остаточного вапора, а последний может явиться также компонентом высококачественного дизельного масла. [c.135]

    Деасфальтизация. Применение селективной очистки, значительно улучшая химический состав масел и их эксплуатационные свойства, не может изменить структуру содержащихся в них углеводородов. В силу этого максимальная величина индекса вязкости селективно очищенного масла из бакинских масляных нефтей (содержащих до 70% нефти месторождения Нефтяные Камни) достигает 60—62 единиц. [c.146]

    Повышение индекса вязкости масел до требуемых величин может быть осуществлено двумя путями вовлечением в масло остаточных компонентов, после их деасфальтизации и очистки, а также применением загущающей присадки. Как показали проведенные исследования, при использовании гудрона балаханской масляной нефти и дистиллятного компонента из смеси нефтей может быть получено дизельное масло с индексом вязкости 80 пунктов. Деасфальтизация гудрона нефти Нефтяных Камней дает возможность получить масло с индексом вязкости 77-78. [c.146]

    Таким образом, применение пропановой деасфальтизации для получения дизельных масел позволит получить их с хорошими вязкостно-температурными и эксплуатационными свойствами, а также с высокими выходами на сырье. Использование непри-меняемых ныне для масляного производства нефтяных остатков гудронов расширяет сырьевые ресурсы и, кроме того, компенсирует снижение выходов товарных масел при получении последних путем глубокой селективной очистки. [c.148]

    Экстракторы (англ. extra tors) — аппараты для разделения жидких или твердых веществ с помощью избирательных растворителей. Экстракторы применяются в различных отраслях промышленности и, в частности, в нефтепереработке при производстве масел (селективная очистка, деасфальтизация). [c.206]

    ЭЛОУ 2 —АВТ 5 — термический крекинг 4 —АГФУ 5 — алкилирование 6 — АВТМ 7 — селективная очистка — деасфальтизация, [c.29]

    Поступающую нефть сортируют таким образом, чтобы после ее переработки обеспечить отбор продуктов в следуюпщх количествах (в объемн. % на нефть) бензина — 44 керосина и дизельного топлива — 31 котельного топлива и битума — 10 смазочных масел — 3 прочих продуктов — 12. Завод условно делится на две части одна из них включает установки, выпускающие топливную продукцию, другая — установки, вырабатывающие химические продукты. К первой относятся установки атмосферно-вакуумной перегонки, каталитического риформинга, каталитического крекинга, газофракционирования, полимеризации непредельных углеводородов и алкилирования. Из дпстиллятных остаточных масляных фракций при помощи селективной очистки, деасфальтизации, депарафинизации, контактной очистки, перко-ляционной очистки и компаундирования на заводе получают широкий ассортимент товарных масел. [c.219]

    Целевое назначение экстракционных процессов масляных производств — удаление из исходного сырья низкоиндексных и коксогенных компонентов, таких, как смолисто-асфальтеновые и полициклические углеводороды, а также высокоплавких парафинов, ухудшающих низкотемпературные свойства товарных масел. В про — изводстве нефтяных смазочных масел применяются следующие 3 типа экстракционных процессов деасфальтизация гудронов, селективная очистка деасфалыизированных гудронов и масляных дистиллятов и депарафинизация экстрактивной кристаллизацией. [c.208]

    Из анализа вышеприведенных требований к качеству экстра — 1ентов можно констатировать, что практически невозможно реко — иендовать универсальный растворитель для всех видов сырья и для нсех экстракционных процессов. В этой связи приходится довольствоваться узким ассортиментом растворителей для отдельных экстракционных процессов. Так, в процессах деасфальтизации гудро — нов широко применялись и применяются низкомолекулярные ал — каны, такие, как этан, пропан, бутан, пентан и легкий бензин, являющиеся слабыми растворителями, плохо растворяющими смолисто—асфальтеновые соединения нефтяных остатков. В процессах селективной очистки масляных дистиллятов и деасфальтизатов применялись сернистый ангидрид, анилин, нитробензол, хлорекс, фенол, фурфурол, крезол и N — метилпирролидон. В процессах депарафинизации кристаллизацией наибольшее применение нашли ацетон, бензол, толуол, метилэтилкетон, метилизобутилкетон, дихлорэтан, метиленхлорид. [c.212]

    Выбор растворителей для промышленных экстракционных процессов очистки масляного сырья значительно облегчается тем обстоятельством, что удаление нежелательных компонентов масел осуществляют путем последовательной (ступенчатой) экстракции вначале проводят деасфальтизацию и обессмоливание гудронов (I ступень), затем деароматизацию деасфальтизата и масляных дистиллятов (II ступень) и далее депарафинизацию рафинатов (III ступень). Следовательно, целевым назначением каждой ступени экстракции становится извлечение только одного компонента, а не сразу всех нежелательных компонентов масляного сырья, для чего, естестветю, значительно легче подобрать оптимальный растворитель. [c.226]

    При очистке деасфальтизатов важную роль играет глубина деасфальтизации, оцениваемая коксуемостью. Очевидно, что легче "деароматизировать" деасфальтизат с низким содержанием поли — циклических ароматических углеводородов, то есть деасфальтизат с меньшей коксуемостью. Поэтому коксуемость деасфальтизатов не, йолжна превышать 1,2 % масс, (предпочтительно около 1,0 % масс.). [c.238]

    Как и в процессе деасфальтизации, для улучшения четкости разделения процесс селективной очистки масел целесообразно вести при высоком температурном градиенте. На установках фур — фурольной очистки масел градиент экстракции поддерживают на уровне 30 — 40 °С, а на фенольной — всего 10 — 20 °С. [c.242]

    В тех случаях, когда растворяющая способность растворителя достг1Точно высока, для создания рециркулята можно использовать допо.шительный растворитель, не смешивающийся с основным полярным растворителем, обладающий хорошей растворяющей способ — НОСТ1.Ю по отношению к высокоиндексным компонентам масляного сырья. Например, в комбинированном процессе деасфальтизации и селективной очистки гудронов, таблица в 9 [c.243]

    Наиболее часто комбинируют следующие процессы ЭЛОУ — АВТ (АТ), гидроочистка бензина — каталитический риформинг, грдроочистка вакуумного газойля — каталитический крекинг — газоразделение, сероочистка газов — производство серы вакуумная перегонка — гидроочистка — каталитический крекинг — газоф-рскционирование деасфальтизация — селективная очистка, депа — рс финизация — обезмасливание и др. [c.254]

Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — вторичная перегонка, гидроформинг 2 — пиролиз, производство ароматических углеводородов 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — каталитический крекинг 7. 8, 9, 10 — селективные очистки дистиллятных масел депарафиннзация карбамидом, адсорбционная очистка //—I3 — производство кокса, котельного топлива, сортовых мазутов /4 — переработка газа полученне сырья для нефтехимических производств 15—17 — деасфальтизация, производство кокса, термический крекинг. /—V — компоненты светлых нефтепродуктов (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500). Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — <a href="/info/309778">вторичная перегонка</a>, гидроформинг 2 — пиролиз, <a href="/info/404901">производство ароматических углеводородов</a> 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — <a href="/info/25178">каталитический крекинг</a> 7. 8, 9, 10 — <a href="/info/63444">селективные очистки</a> дистиллятных масел депарафиннзация карбамидом, <a href="/info/310106">адсорбционная очистка</a> //—I3 — <a href="/info/652480">производство кокса</a>, <a href="/info/80857">котельного топлива</a>, сортовых мазутов /4 — <a href="/info/1619770">переработка газа полученне</a> сырья для <a href="/info/1469975">нефтехимических производств</a> 15—17 — деасфальтизация, <a href="/info/652480">производство кокса</a>, <a href="/info/66231">термический крекинг</a>. /—V — <a href="/info/1455545">компоненты светлых нефтепродуктов</a> (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500).
    Перспективной схемой глубокой переработки сернистых мазутов является комбинированная система КТ-2Аа [146]. Система включает глубоковакуумную перегонку мазута, легкий гидрокрекинг вакуумного газойля с получением компонента дизельного топлива и сырья дпя каталитического крекинга, каталитический крекинг с узлом каталитической очистки и газофракционирование (рис. 5.6). Отдельным блоком предусматривается деасфальтизация гудрона выше 540 (580 °Q) углеводородным растворителем и гидрообессеривание деасфальтизата с получением легких дистиллятов, сырья для каталитическА-о крекинга и замедленного коксования. По данным разработчика эта система обеспечит в три раза большую прибыль по сравнению со схемой, в которой гудрон подвергается висбрекингу. [c.184]

    Область применения. Процессы депарафинизации кристаллизацией охлаждением из растворов в жидких углеводородных растворителях-разбавителях применяют почти исключительйо для депарафинизации тяжелого остаточного сырья. Перед депа-рафпнизацией сырье проходит деасфальтизацию и очистку избирательными растворителями. Применяют предварительную очистку сырья и кислотно-контактным методом. [c.174]

    Очистке остаточных продуктов одиночными растворителями, например фурфуролом или фенолом, обычно предшествует деасфальтизация пропаном, так как эти растворители не экстрагируют асфальт, находящийся в большинстве остаточных продуктов. При деасфальтизадии пропаном раствори- [c.192]

    Асфальто-смолпстые вещества очень плохо растворяются в пропане, а асфальтены практически не растворяются. При температурах обработки выше 40° С они начинают незначительно растворяться в пропане. Это свойство п позволяет применять пропан в качестве деасфальтирующего и обессмоливающего растворителя для очистки масляных фракций желательные углеводороды перехпттяд. в раствор, а нежелательные выделяются. Процесс деасфальтизации гудрона или полугудрона основан на различной растворяющей способности жидкого пропана по отношению к жидким углеводородам и асфальто-смолистым веществам. [c.212]

    К сожалению, дальнейшее усовершенствование процессов очистки масел на бакинских заводах внедрением селективной очистки и деасфальтизации пока не исключает кислотную обработку ыасляного сырья, но значительно сокращает расход серной кислоты для селективно очищенных продуктов. [c.144]


Смотреть страницы где упоминается термин Очистка и деасфальтизация: [c.29]    [c.343]    [c.196]    [c.90]    [c.259]    [c.27]    [c.112]    [c.356]   
Технология переработки нефти и газа Часть 3 (1967) -- [ c.157 ]




ПОИСК







© 2025 chem21.info Реклама на сайте