Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрофотометрия молибдена

    Абсорбционный метод в значительной мере дополняет эмиссионный и обладает рядом преимуществ. Если область применения эмиссионной пламенной фотометрии ограничена относительно низкой температурой применяемых пламен, где могут возбуждаться спектры элементов с низкими потенциалами возбуждения, то в атомно-абсорбционной спектрофотометрии пламя используется только для испарения и диссоциации различных соединений определяемых элементов и получения атомного пара. Поэтому метод позволяет определять элементы, не обнаруживаемые по эмиссионному варианту (сурьма, висмут, платина, селен, золото, цинк, ртуть). Для некоторых элементов чувствительность абсорбционного метода превышает чувствительность эмиссионного (серебро, магний, кадмий, свинец, молибден). [c.206]


    Влияние небольших количеств хрома(У1) в некоторых случаях (например, после сплавления с карбонатом) можно компенсировать, помещая аликвотную часть анализируемого раствора в кювету сравнения спектрофотометра. Молибден(У1) и ванадий(У) также дают желтоватую окраску с перекисью водорода в щелочных растворах, однако последняя менее интенсивна, чем образуемая ураном. Очень небольшие количества железа(П1) и других элементов, осаждающихся в этих условиях, не мешают, если карбонатный раствор отфильтровать от осадка (при необходимости перед добавлением перекиси раствор можно прокипятить для коагуляции осадка). Небольшие количества церия в растворе едкого натра не мешают, если его желтый осадок отфильтровать после введения перекиси. Фториды и фосфаты в количествах вплоть до 0,1 г и более в 25 мл раствора влияют мало. Сульфаты в подобных количествах также не мешают. Силикаты практически не мешают. Органические вещества могут давать окраску в щелочных растворах и поэтому должны отсутствовать. [c.819]

    Для приготовления эталонных растворов берут пять делительных воронок емкостью 100 мл, вводят по 5 мл воды, стандартного раствора, содержащего молибден (мкг) 0,0 2,0 4,0 6,0 8,0 соответственно, приливают в каждую 3 мл раствора роданида аммония, 2 мл аскорбиновой кислоты, перемешивают и выдерживают растворы в течение 2 ч, после чего приливают 1 мл ТБА, 3 мл серной кислоты, 10 мл хлороформа и встряхивают содержимое воронок в течение 10 мин на механическом вибраторе. После расслаивания отделяют органическую фазу и измеряют оптическую плотность хлороформных растворов при % 465 нм относительно раствора, не содержащего молибдена (1-я воронка). Измерение производят на спектрофотометрах различных марок и строят градуировочный график по экспериментальным данным, обработанным методом наименьших квадратов. [c.180]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]


    Чувствительность метода. Пламенные спектрофотометры, собранные на основе монохроматоров УМ-2 и СФ-4, оказались достаточно простыми и универсальными приборами, позволяющими определять большое число металлов. Однако при измерении малых концентраций возникают затруднения, вызванные фоном пламени [39.4]. Прежде всего, источником фона является само пламя, в котором возбуждаются радикалы и молекулы О2, СН, Сд. Нестабильность фона пламени существенно ограничивает чувствительность и точность метода. Фон пламени смеси ацетилен—воздух мешает определению элементов, линии которых находятся в области 4000—6000 А в красной же и инфракрасной области фон ничтожно мал. Кроме того, посторонние элементы, присутствующие в растворе, часто дают излучение, спектр которого состоит из молекулярных полос или является сплошным. К числу этих элементов относятся щелочноземельные и редкоземельные металлы, бор, алюминий, медь, фосфор, молибден, ниобий, уран, цинк, бериллий, ванадий, олово, теллур и титан. Следует заметить, что при недостаточной дисперсии прибора и широких входных щелях, излучение соседних линий может привести к завышенным результатам. Экспериментальное сравнение приборов с неподвижным спектром и со сканированием показало, что при сканировании величина фона значительно меньше влияет на точность измерений и на чувствительность метода. [c.304]

    Малые количества фосфора можно определять колориметрически следующими способами 1) превращением в синий комплекс, который фосфор образует е молибденом, восстановленным хлоридом олова (II), и сравнением интенсивности окраски со стандартом визуально или в фотоколориметре 2) по реакции образования желтого комплекса с ванадием (V) и молибденом (VI) и измерением светопоглощения раствора при 450 ммк в спектрофотометре . Последний метод применим также к продуктам, содержащим значительные количества фосфора, как, например, фосфатные породы и основной фосфат кальция [c.792]

    Хромотроповая кислота - образует с титаном ряд окрашенных комплексов. Для спектрофотометрии используется красный комплекс = 470 вм), имеющий постоянную оптическую плотность в в интервале pH 2-3,3 и = 1,2.10 . В этих условиях с реактивом ве взаимодействуют следующие ионы алюминий, барий, берилл й> висмут, кальций, кадмий, кобальт, хром (Ш), медь (1,П), железо (П), галлий, ртуть (1,П), индий, магний, марганец (П), никель, свинец платина (1У), сурьма (Ш), селен (У1), олово <П,1У), теллур,торий, таллий (Ш), цинк, цирконий, серебро образуют окраску железо (Ш), хром (У1). ванадий (У), молибден (У1), вольфрам (У1). Мешающее действие первых четырех элементов устраняется их восстановлением аскорбиновой кислотой. Реактив применим для анализа разнообразных объектов. [c.22]

    Молибден является первым из числа редких тугоплавких металлов, к определению которых был применен метод атомно-абсорбционной спектрофотометрии [11, ИЗ]. В более ранних работах предполагалось, что молибден, равно как и другие элементы, существующие в водных растворах преимущественно в анионной форме, не может определяться атомноабсорбционным методом вследствие малой концентрации в пламени свободных атомов металла [1, 24, 25, 62]. В последующих работах было установлено, что для атомизации указанных элементов в целях создания в пламени условий, благоприятствующих восстановлению окислов до металлов, необ- [c.159]

    В качестве исходных л-комплексов использованы бис(этилбензол)-хром и бис (этилбензол) молибден, которые были получены по описанному методу [2], очищены соответственно ректификацией и молекулярной дистилляцией до содержания основного вещества 94—95%. (Примесями являются л-комплексы указанных переходных металлов с другими ареновыми лигандами). Приготовление рабочих растворов, реакцию полимеризации мономеров и отбор проб для хроматографического анализа остаточного мономера и ареновых лигандов проводили при отсутствии контакта реакционных смесей с кислородом воздуха. Стирол и фенилацетилен очищали по методике, изложенной в работе [3]. ИК-спектры полимеров записывали на ИК-спектрометре иК-20, спектры поглощения получены в вакуумных кварцевых кюветах на спектрофотометре СФ-16. [c.110]

    Для приготовления эталонных растворов берут пять делительных воронок емкостью 200 мл, вводят стандартный раствор, содержащий молибден в количестве (мкг) 0,0 0,5 1,0 2,5 5,0 соответственно, приливают по 4 мл 2 н. серной кислоты, разбавляют водой до 75 мл, затем вводят 3 мл бромида калия, 3 мл салицилфлуорона и 15 мл антипирина, доводят объем водой до 100 мл. Через 5 мин экстрагируют 10 мл хлороформа, производя энергичное перемешивание в течение 1 мин. Органические фазы переводят в мерные пробирки емкостью 10 мл, добавляют, если нужно, 2—3 капли хлороформа до объема 10 мл. Измерение оптической плотности экстрактов проводят на спектрофотометрах [c.181]

    Методом пламенной спектрофотометрии определяют содержание рения в молибденитах с чувствительностью до 2,5 мкг/мл [742]. Молибденит растворяют в конц. ИКОз. Из полученного раствора Ке(УП) извлекают этилгексаноном. Органическую фазу, содержащую рений, вдувают в кислородно-ацетиленовое пламя. Абсорбцию света измеряют при 346 нм. Содержание рения устанавливают по калибровочному графику, построенному по стандартным растворам для области концентраций рения 25— 500 мкг/мл. [c.246]


    Наряду с графитовыми, применяются также трубчатые атомизаторы, изготовленные из фольги тугоплавких металлов. Чаще всего для этой цели применяют молибден и вольфрам. Типичные размеры таких атомизаторов внутренний диаметр 1,5-2 мм, длина 20-25 мм. Главная область применения металлических трубчатых атомизаторов — определение элементов, склонных к карбидообразованию (если только углерод не содержится в самой анализируемой пробе). Основное преимущество — возможность быстрого нагрева атомизатора (до 10 ООО град/с), что позво тяет получать сигналы поглощения в виде очень узких (по времени) резких пиков. Однако повышение чувствительности измерений в данном случае неизбежно связано с ухудшением точности измерений. Кроме того, большинство существующих спектрофотометров не обладает быстродействием, необходимым для работы с такими атомизаторами. [c.842]

    При визуальном методе титрования трехвалентиого же.леза обычно в качестве индикатора применяется салициловая кислота. Ион трехвалентного железа образует с салициловой кислотой интенсивно окрашенный в фиолетовый цвет комплекс, характеризующийся максимумом светопоглощения при длине волны 525 мц. Титрование проводят, согласно Суитсеру и Бриккеру [25], в кислых растворах, забуференных ацетатом с таким расчетом, чтобы pH анализируемого раствора перед титрованием было в пределах 1,7—2,3. Определение этим методом очень точное, и, как можно было ожидать, ему не мешает присутствие многих катионов. Метод был применен авторами для определеиия железа в нержавеющей стали, содержащей хром, молибден, марганец, никель и некоторые другие элементы в виде следов. Авторы пользовались для измерений спектрофотометром Бекмана (модель В) и специальн1 сконструированными сосудами для титрования. [c.400]

    Степанова и Якунина [40] в качестве реактива на молибден использовали предложенную Кларком этанольную суспензию цинк-дитиола, гораздо более устойчивую во вре.мени, чем дитиол или водные растворы цинк-дитиола. Авторы определяли молибден в минеральном сырье визуально-колоримет-рически определение вели в солянокислой среде в об Лме 12 мл. По мнению авторов, это в 10 раз превышает чувствительность определения по сравнению со спектрофотометрией в - M кювете. [c.165]

    Метод основан на получении молибден-роданидного комплекса, окрашенного в слабо-оранжево-желтый цвет, образующегося в кислой среде в присутствии роданида калия и восстановителя (хлорида олова). Определения обычно проводят на ФЭК или спектрофотометре после экстрагирования полученного комплекса органическим растворителем (этиловый эфир, изоамиловый спирт и др.). В модификации Ринькиса рекомендуется визуальное определение молибдена по пробирочным шкалам. [c.55]

    Метод основан на взаимодействии ниобия с пикр-ампиом Р в 4 н. растворе соляной кислоты. Оптическую плотность измеряют на спектрофотометре при Х = 560 нлг. Определению ниобия не мешают молибден, уран, титан, вольфрам, о. юво, алюминий, бериллий при содержании [c.130]

    Метод основан на измерении светопоглощения экстракта продукта реакции циркония с пикрамином Р на фотоколориметре или спектрофотометре при Х=5Ь0нм. Мешающее влияние железа устраняют восстановлением его гидроксиламином или аскорбиновой кислотой. Медь при содержании до 0,01% маскируют тиомочевиной. Молибден при содержании до 1 % не мешает определению. При большом содержании ниобия экстракт обрабатывают 6 н. соляной кислотой и прибавляют арсеназо III. При содержании 0,1—5% циркония относительная ошибка определения составляет 2,0%- [c.158]

    Ранее был разработан кинетический косвенный (по молибдену) метод определения (0,3-3).10 мкг гЪосфора /1/. В соответствии с этим методом в настоящей работе фосфор в виде (ф осфата переводят в желтую гетерополикислоту и далее проводят следующие one- рации экстракцию гетерополикислоты смесью бутиловый спирт -хлороформ, отмывание излишка молибдата промывной жидкостью и разрушение комплексного соединения фосфорномолибденовой кислоты раствором шелочи. Определение молибдена выполняют кинетическим методом по реакции каталитического окисления йодистого калия перекисью водорода в присутствии крахмала. Кинетическую реакцию прерывают разбавление реакционной смеси водой /2/ и далее измеряют оптическую плотность раствора на спектрофотометре или фотоэлектроколориметре. По найденному количеству молибдена устанавливают соответствующее ему количество фосфора (атомное соотношение Мо Р =12 1, весовое - 37 1). [c.186]


Смотреть страницы где упоминается термин Спектрофотометрия молибдена: [c.5]    [c.182]    [c.44]    [c.607]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометр

Спектрофотометрия



© 2025 chem21.info Реклама на сайте