Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплекс симметрия и стереохимия

    Транс- и цис-изомерия комплексов. Простейшим примером использования спектрополяриметрии в стереохимии координационных соединений является определение цис- и гранс-изомеров в октаэдрических комплексах с двумя бидентатными лигандами типа этилендиамина (еп), например [КЬ(еп)2СЬ]+. Гранс-конфигура-ция имеет центр и плоскость симметрии и поэтому оптически не активна (рис. Х.4, а). В цис-изомере отсутствуют эти элементы симметрии, т. е. эта молекула диссимметрична и оптически активна (рис. Х.4, б). [c.208]


    Симметрия всего комплекса имеет важное зна чение для исследования явлений переноса з ряда и оптической активности комплексов. Перенос заряда между ионом металла и лигандом зависит.от симметрии комбинации центрального иона металла и я-электронной системы лигандов, участвующих в обмене электрона. При рассмотрении симметрии можно пренебречь влиянием тех заместителей в молекуле лиганда, которые не участвуют в системе я-сопряжения молекулы. Перенос заряда оказывается достаточно интенсивным и, следовательно, применимым в аналитической химии, если отсутствует общий центр симметрии для центрального иона и для всех атомов системы сопряжения (ср. разд. 2.5.2). При изучении оптической активности комплексных соединений необходимо детальное знание их стереохимии, потому что комплексные соединения проявляют оптическую активность только тогда, когда у них нет ни центра симметрии, ни плоскостей симметрии, ни зеркально-поворотных осей симметрии. Отсюда следует, что оптически активные соединения либо вообще не обладают никакими элементами симметрии, кроме тождественного преобразования (асимметричные соединения), либо им свойственны только оси симметрии (диссимметричные соединения). [c.54]

    Если структура /(-спектра рентгеновского поглощения действительно может однозначно интерпретироваться в терминах симметрии комплексов, применение этого метода открывает очень интересные возможности сравнительного изучения стереохимии твердых веществ и их растворов. [c.57]

    Уже в конце прошлого века и в начале нынешнего стереохимия, а с ней и теория оптической активности, применялась при изучении соединений серы, селена, олова, кремния и фосфора. В 1893 г. А. Вернер писал Рядом со стереохимией соединений углерода и соединений азота становится теперь стереохимия соединений кобальта и соединений платины . Это было началом координационной теории, создателем которой был А. Вернер. Он применил стереохимические идеи к объяснению свойств комплексных соединений. При этом круг используемых типов симметрии расширился, стали изучаться октаэдрические — на пример, [ o(NHз)6] lз — и квадратные — соединения Р1(И)—комплексы. Важнейшим результатом теории Вернера было правильное предсказание оптической изомерии комплексных соединений. [c.115]

    Стереохимия реакций замещения при атоме серы отличается ют стереохимии реакций замещения при атоме углерода, не имею- щего Зс -орбиталей. Если промежуточное соединение или активированный комплекс имеет симметрию тригональной бипирамиды, то стереохимия замещения будет зависеть также и от конфигурации замещающей и замещаемой групп. [c.16]


    Описание химической связи в металлах, ионных и молекулярных кристаллах, комплексных соединениях в настоящее время основывается все еще на различающихся между собою модельных представлениях. Мы вправе ожидать, что различные типы химической связи, существующие в твердых телах, могут проявляться и в явлениях гетерогенного катализа. Это положение находит свое отражение в существующих теориях катализа. В мультиплетной теории [1] на первое место выдвигается представление о валентно-химической связи, в то время как в электронной теории катализа на полупроводниках [2]— адсорбционно-химическая связь, в образовании которой играют роль электроны проводимости и электронные дырки. Эти представления о природе химической связи, обусловливающей образование переходных активированных комплексов на поверхности катализатора, не являются, конечно, единственными, или даже г,11авными характеристиками соответствующих теорий. Так, в мультиплетной теории, несомненно, важнейшей стороной является стереохимия катализа — пространственные соотношения и принцип структурного соответствия между расположением атомов в реагирующих молекулах и симметрией атомов на поверхности катализатора. [c.86]

    У ионов в S-состояниях (т. е. обладающих нулевым орбитальным ангулярным моментом) не наблюдается зависимости магнитного момента от симметрии окружающего поля, и величина момента близко согласуется с вычисленной только по спину в качестве примеров можно назвать ионы Мп2+ и Fe + в растворе или в твердом состоянии. Однако у ионоь в спектроскопических состояниях D и F расположение окружающих атомов часто оказывает существенное влияние на. величину момента. Так, если ион находится в F-состоянии (например, Со + или Ni +), то кубическое, в основном, поле расщепляет семикратно вырожденный уровень на один синглетный и два трип летных уровня. Расположение этих уровней называется картиной Штарка (Stark pattern). Если синглетный уровень является энергетически наиболее низким, то наблюдается такое состояние атома, которое близко соответствует S-состоянию с пренебрежимо малым орбитальным инкрементом, и расчет только по спину дает хорошие результаты. Однако, в известных условиях, расположение энергетических уровней может быть обращенным в этом случае расположен ный более низко триплет обусловливает большой орбитальный инкремент. Наличие прямого или обращенного расположения (картины Ш арка) зависит от стереохимии окружающих групп таким образом, в известных случаях величина орбитального инкремента позволяет судить о стереохимии комплекса. Хотя применение этих положений ограничивалось главным образом комплексами с ионными связями, тем не менее по величине орбитального инкремента можно делать соответствующие выводы и в некоторых случаях, когда связь ковалентна . [c.259]

    В силу того что кристаллическое вещество, в отличие от других, некристаллических, веществ, имеет упорядоченную атомную структуру и анизотропно, методы кристаллографии резко отличаются от методов других наук. Симметрия проявляется во внешней форме кристаллов, в их структуре, в физических явлениях, протеканэщих в кристаллах, во взаимодействии кристалла с окружающей средой, в изменениях, претерпеваемых кристаллом под влиянием внешних воздействий. Поэтому особенностью метода кристаллографии является последовательное применение принципа симметрии во всех случаях. Благодаря этому весьма специфическому методу кристаллография является самостоятельной наукой, связанной с другими частичным совпадением задач и предмета исследования в конкретных случаях. Нельзя изучать кристаллическое вещество вне процесса его образования, вне связи с жидкой и газообразной фазой. Эти процессы изучает физическая химия, так как лю бой процесс или положение равновесия зависит от физико-химических условий среды. Относительное расположение атомов и молекул в кристаллическом веществе зависит от качества самих атомов, от их химической природы. Отсюда тесная связь с химией, особенно со стереохимией. Атомы и молекулы в кристаллах образуют геометрически правильные комплексы. Совокупность их определяет форму кристаллов в виде многогранников. Многогранники же изучаются математикой и, в первую очередь, геометрией. Очевидна, конечно, связь кристаллографии с физикой, особенно с теми ее разделами, которые занимаются изучением различных свойств твердых тел. В последние годы интенсивно развивается промышленность, использующая монокристаллы с различными свойств ами оптическими, электрическими, механическими и т. п. Связь кристаллографии с химией, физической химией и физикой настолько тесная, что не позволяет провести даже условных границ между этими науками. [c.10]

    В 1937 г. Ян и Теллер сформулировали важную для стереохимии теорему, которая гласит если орбитальное состояние какого-либо иона вырождено по симметрии, лиганды в комплексе будут действовать на него до тех пор, пока ион не примет конфигурацию, соответствуюищю более низкой симметрии и меньшей энергии и снимаюгцую тем самым вырождение. Более общую теорему, выдвинутую Яном, можно сформулировать следующим образом. Вырожденное электронное состояние как орбитальное, так и спиновое) нелинейной молекулярной системы неустойчиво, для стабилизации такая система должна подвергнуться искажению, снимаюи гму вырождение. [c.440]


    Бишоп и сотр. [11] на основании данных по ЯМР широких линий для РеН2(СО)4 установили, что внутримолекулярное расстояние Н---Н составляет 1,88 0,05 А. При предполагавшейся гео метрии молекулы расстояние Ре—Н должно составлять 1,1 А, что несколько меньше ковалентного радиуса одного атома железа. Физические свойства МпН(С0)5 [12] весьма сходны со свойствами Ре (СО) 5, который, как было уже известно, обладает структурой в форме тригональной бипирамиды [1]. Согласно первоначальным взглядам на стереохимию гидридных комплексов, из этого обстоятельства следовало, что МпН (СО) 5 построен также в виде тригональной бипирамиды и что стереохимическое влияние атома водорода минимально. Эту точку зрения подтверждали данные ИК-спектров [13, 14], при интерпретации которых предполагалось, что молекула имеет симметрию Се или Сгг, но не С4 . [c.39]

    Энергетические барьеры для перегруппировки изменяются в широких пределах в зависимости от координационного числа, стерических и электронных факторов. Для пятикоординационных систем и комплексов с координационными числами выше шести энергетические барьеры, как правило, низки, тогда как большинство четырех- и шестикоординационных гидридов являются жесткими. Отсутствие стереохимической жесткости у молекул гидридов может привести к неправильным заключениям при изучении стереохимии резонансными методами. Так, для многих молекул типа НМЬ4, где Ъ — фосфорсодержащий лиганд, сигнал от гидрид-иона наблюдается в виде симметричного квинтета. В некоторых случаях на этом основании делалось заключение, что молекулы имеют форму тетрагональной пирамиды. Однако рентгеноструктурный анализ показывает, что все пятикоординационные гидриды, исследованные до сих пор, имеют в действительности симметрию Сз , а исследования ЯМР при низких температурах свидетельствуют о том, что эта же симметрия сохраняется и в растворе [89]. Таким образом, кажущаяся эквивалентность фосфорсодержащих лигандов в растворе обусловлена низким энергетическим барьером внутримолекулярной перегруппировки, а не магнитной эквивалентностью в равновесной конфигурации. Подробное изучение стереохимической лабильности молекул может дать в благоприятных случаях интересные данные о механизме процесса. [c.177]

    Разделение и последующий анализ смесей геометрических изомеров — другое потенциально важное применение газовой хроматографии в стереохимии. Метод этот особенно эффективен для разделения смесей изомеров с весьма незначительными различиями в структуре. Впервые он был применен в координационной химии соединений металлов для разделения цис- и гракс-изомеров трифторацетилацетоната хрома(П1) [12]. Если бидентатные или ноли-дентатные лиганды несимметричны, образованные такими лигандами комплексы существуют обычно во многих изомерных формах. Нанример, синтез октаэдрических комплексов с несимметричными бидентатными лигандами будет приводить к образованию двух геометрических изомеров [7, 15—17]. Два изомера трифторацетилацетонатных комплексов показаны на рис. 5.2. Структуры даны в упрощенном виде с тем, чтобы яснее показать факторы симметрии, обус.ловливающие образование изомеров. В цис-шо- [c.143]

    Вернер также установил, что для комплексов с тетраэдрической 11 октаэдрической стереохимией возможна оптическая изомерия, отличающаяся от геометрической. Так, ч с-изомер [Со(еп)2С12]С1 не имеет ни плоскости, ни центра симметрии и должен существовать в виде пары соединений, имеющих строение несовместимых друг с другом зеркальных изображений- право-и левовращающего. Это положение Вериер доказал, разделив в. [c.21]


Смотреть страницы где упоминается термин Комплекс симметрия и стереохимия: [c.400]    [c.251]    [c.391]    [c.69]    [c.25]    [c.267]    [c.100]    [c.42]    [c.51]    [c.53]   
Строение и свойства координационных соединений (1971) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Стереохимия



© 2025 chem21.info Реклама на сайте