Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя на реакции типа

    Взаимодействие минимально для случая ориентации голова к хвосту (0 = 180 ). Заряд активированного комплекса равен заряду иона А, так что, кроме энергии диполя, определяемой по уравнению (XV.11.3), благодаря наличию заряда должен появиться кулоновский член типа члена в уравнение Дебая — Хюккеля. Однако в результате сокращения (при и = 0) с соответствующим выражением для иона можно получить следующее уравнение, описывающее влияние растворителя на константу скорости реакции иона с диполем  [c.458]


    Влияние растворителя на тип реакции (элиминирование и замещение). С увеличением полярности растворителя возрастает доля реакций 5к2 за счет реакций Е2. Классическим примером является использование спиртового раствора КОН для осуществления элиминирования и более полярного водного раствора КОН для замещения. Рассмотрение распределения зарядов, подобное описанному в т. 2, разд. 10.14 [115], может служить только частичным объяснением этого явления. В большинстве растворителей реакции 8м1 преобладают над реакциями Е1. Последние наиболее конкурентоспособны в полярных растворителях, являющихся слабыми нуклеофилами. [c.36]

    ВЛИЯНИЕ РАСТВОРИТЕЛЕЙ НА ТИП РЕАКЦИИ [c.134]

    Влияние растворителей на тип реакции 135 [c.135]

    В данной главе описаны некоторые методические приемы и дополнительные возможности спектроскопии ЯМР С при решении ряда типичных проблем органической химии. Кратко рассматриваются исследования механизмов реакций, динамических процессов, влияния растворителя, другие типы импульсных последовательностей в ФС ЯМР С, а также методы спиновой развязки и другие приложения, включая ХПЯ и ЯМР С в твердых телах. [c.243]

    Межмолекулярная стабилизация феноксильных радикалов (влияние растворителя). Данный тип стабилизации, несмотря на его важность в связи с проблемой управления скоростями и направлениями радикальных реакций, исследован сравнительно мало. Влияние среды на кинетику радикальных реакций сводится главным образом к изменению электронной структуры реагирующих частиц [c.96]

    Количественные обобщения и влияние растворителя на скорость химических реакций распространяются прежде всего на те три основных типа взаимодействий в растворах, которые перечислялись на с. 33—34. Поскольку энергия всех этих взаимодействий в первом приближении обусловлена электростатическими взаимодействиями, то разумеется, и здесь влияние диэлектрической проницаемости выступает на первый план. [c.79]

    Путем измерения с помощью указанных выше методов констант равновесия /С= [А ] [ВН]/[НА] [В ] реакций переноса протона типа реакции (4.16) удалось определить относительные собственные кислотности и основности молекул в газовой фазе. Результаты измерения аналогичных параметров реакций переноса протона типа реакции (4.17) (здесь 8 —молекула растворителя) позволяют оценить влияние растворителя при ступенчатой сольватации ионов, т. е. при последовательном присоединении молекул растворителя (п может изменяться от О до 4— 9), и тем самым изучать системы промежуточные между газофазными системами и растворами  [c.134]


    В разд. 3.3.1 и 4.2.1 уже рассматривались равновесия типа кислота Бренстеда — основание Бренстеда, в которых сам растворитель участвует как кислота или как основание. В этом разделе будут приведены примеры влияния растворителей на такие реакции переноса протона, в которых растворитель непосредственно не участвует. Интерес к исследованию такого рода кислотно-основных равновесий в неводных растворителях стимулировали основополагающие работы Барроу и др. [164], изучавших кислотно-основные реакции между карбоновыми кислотами и аминами в тетрахлорметане и хлороформе. [c.160]

    В общем случае при изучении влияния растворителей на скорости реакций недостаточно определить только изменение так как в соответствии с уравнением (5.5) этот параметр зависит от изменения как энтальпии, так и энтропии. Различают четыре типа влияния и S.AS на скорость реакции [41]. [c.189]

    В последующих разделах сначала будет рассмотрена реакционная способность органических соединений в газовой фазе, а затем мы обсудим наиболее важные взаимосвязи качественного и количественного характера между скоростями реакций и свойствами растворителей. В разд. 5.2 сравниваются реакции в газовой фазе и в растворах, что позволит показать огромные изменения в скоростях реакций, сопровождающие переход от газовой фазы к растворам. В разд. 5.3 рассматриваются правила Хьюза — Ингольда и границы применимости этих правил, которые качественно описывают влияние растворителей на реакции замещения и элиминирования и базируются на классификации таких реакций в соответствии с типом и распределением заряда в исходных веществах [16]. Затем будут упомянуты аналогичные правила, предназначенные для оценки влияния растворителей на органические реакции, в основу которых положены другие классификации реакций, предложенные Косо- [c.192]

    Изучение других 5м2-реакций типа Х +К ->ХК+ с различными нуклеофилами X , уходящими группами У и алкильными группировками К позволило определить собственную реакционную способность большого числа сочетаний X и КУ в отсутствие влияния растворителей. Полученные данные обсуждены в свете нуклеофильности X , легкости элиминирования V и пространственных препятствий [474—477]. Показано, например, что в газовой фазе нуклеофильность различных анионов [c.196]

    Как следует из уравнения (5.46), присоединение синглетного кислорода к 2-метилпентену-2 осуществляется по согласованному механизму енового типа, что хорошо согласуется со слабым влиянием растворителей на скорость этой реакции [138]. При замене растворителя (метанола на дисульфид углерода) [c.241]

    В работе [580] влияние растворителя на скорость бимолекулярных реакций переноса атома водорода типа —Х-  [c.280]

    Константу скорости такой бимолекулярной реакции в растворителе 8 можно выразить через константу ее скорости в стандартном растворителе О соответствующие коэффициенты активности переноса растворителя. Уравнение (5.115) позволяет оценить влияние растворителя на скорость реакции, обусловленное изменением степени сольватации взаимодействующих аниона V и неэлектролита КХ, а также активированного комплекса анионной природы [УКХ ] . При замене одного растворителя на другой анионные и незаряженные активированные комплексы ведут себя точно так же, как и настоящие анионы и неэлектролиты близкого строения. Анионные активированные комплексы типа [УКХ ] должны обладать всеми свойствами больших поляризуемых анионов и, следовательно, лучше сольватироваться в поляризуемых биполярных растворителях, чем в протонных средах. [c.326]

    При протекании каталитической реакции через промежуточные комплексы влияние растворителя будет обусловлено его снособ-ностью образовывать комплексы с активными атомами поверхности катализатора. Если растворитель обладает высокой электронной донорно-акцепторной способностью или высокой л-электронной плотностью, то он сам будет входить в сферу лигандов комплекса и может понижать активность катализатора. Наоборот, достаточно инертные, неполярные растворптелп типа парафинов и циклопарафинов будут мало влиять на механизм комплексообразованпя. На кинетике процесса все это будет отражаться в виде ускорения или замедления скорости реакции при замене растворителя или усложнения формального уравнения кинетики вследствие изменения концентрации пли характера растворителя по ходу реакции. [c.50]

    Большое влияние на скорость реакции оказывает тип используемого растворителя. Апротонные растворител/и типа (XXX) могут почти нацело реагиро вать с олефинами, имеющими в молекуле активированную двойную связь, при комнатной температуре и в присутствии тpeт- YlgO [28]. Протекающие превращения представлены уравнениями  [c.173]


    Иавестные исследования о влиянии растворителей на реакцию Л10ЖДУ олефинами и карбоновьгии кислотами почти исключительно относятся к некаталитической реакции триметилэтилена с трихлоруксусной кислотой [9, 82—84]. Влияние растворителей на каталитически протекающие реакции указанного типа изучено впервые С. В. Завгородним [80] на примере реакции уксусной и трихлоруксусной кислот с циклогексеном в присутствии эфирата фтористого бора в растворителях бензоле, четыреххлористом углероде и ацетоне. Изучалась скорость реакции в этих условиях вторым методом. Циклогексен и кислоты употреблялись в равномолекулярных отношениях. Эфират фтористого бора применялся в количестве 3—8%. Параллельно проводились две серии опытов. В одной из них разбавление реакционной смеси растворителем доводилось до увеличения объема смесц. в 2 раза. Ниже приводятся экспериментальные данные. [c.48]

    Теоретическое исследование кинетики и механизма химических реакций в растворах — намного более сложная задача по сравнению с исследованием газовых реакций, поскольку р растворах реагирующие вещества могут взаимодействовать с растворителем (следует учитывать влияние диэлектрической проницаемости растворителя, степень гидратации, присутствие посторонних компонентов и т. д.). Существует много различных типов реакций в растворах для некоторых из них влиянием растворителя мож но пренебречь (особенно в тех случаях, когда используются неполярные растворители). При некоторых условиях участники реакции взаимодействуют с такой же скоростью, как и в газах, как, например, при разложении N205. Существенным фактором является число столкновений между молекулами реагирующих веществ в растворе (включая растворитель). Дебай и Рабинович провели оценку числа столкновений в растворе, согласно которой оно примерно в три раза больше, чем в газовой фазе. Это согласуется с экспериментальными данными, также подтверждающими, что фактор столкновений для реакций в растворах увеличивается примерно в три раза. Так как энергия активации практически не меняется, скорость реакций в растворе также увеличивается в три раза по сравнению с газовыми реакциями. Для реакций в растворе характерна также небольшая подвижность реагирующих частиц (по сравнению с реакциями в газовой фазе). Для цепных и других реакций, в которых появляются Б качестве промежуточных частиц радика- [c.183]

    Чем полярнее переходное состояние, тем оно более соль-ватировано, С другой стороны, сольватация зависит от сольватирующей способности растворителя, связанной с его диэлектрическими свойствами и поляризуемостью. При изучении реакций типа 5лг2 можно выделить два механизма влияния растворителя. Если атакующая частица представляет собой ион, то в переходном состоянии ее полярность снижается, поскольку она передает часть своего электронного заряда группе X [c.190]

    Такое переплетение влияния различных эффектов и факторов на протекание большинства, в том чи"сле простейших по химизму, реакций в полимерах приводит к затруднению их количественного описания. Углубленное количественное описание проведено к настоящему времени на примерах реакций термической деструкции, окисления полимеров, ряда полимераналогичных реакций с учетом эффекта соседних звеньев и формирующейся композиционной неоднородности продуктов (гидролиз, хлорирование и др.), многих межмакромолекулярных реакций и формирования сетчатых структур в полимерах. Чисто химические аспекты изучены значительно больше в реакциях типа полимер — низкомолекулярное вещество по сравнению с реакциями полимер — полимер. При этом следует иметь в виду, что получаемые при количественном описании хи мических реакций полимеров константы их скоростей часто за висят от условий проведения реакций (тип растворителя, темпе ратура и др.), так как эти условия влияют на конформационные надмолекулярные и другие эффекты, которые, как было показано в свою очередь определяют возможность и степень протекания той или иной реакции. Наиболее сложными для количественного описания являются твердое и вязкотекучее состояния полимеров, концентрированные растворы, т. е. состояния, где проявляется межмолекулярное взаимодействие, переходы от полимераналогичных к внутримолекулярным и межмакромолекулярным взаимодействиям, что приводит к получению различных по физическому [c.229]

    В реакциях Sn2 влияние растворителя зависит от того, к какому из четырех зарядовых типов принадлежит реакция (см. начало гл. 10). Для типов I и IV первоначальный заряд дело-кализуется в переходном состоянии, поэтому полярные растворители затрудняют реакцию. Для типа И1 в переходном состоянии первоначальные заряды уменьшаются, поэтому полярные растворители еще более затрудняют эту реакцию. И только реакции типа II, реагенты в которых не заряжены, а заряд возникает в переходном состоянии, ускоряются в полярных растворителях. Эти эффекты сведены в табл. 10.11. Для реакции Sn2 снова необходимо рассматривать различия между протонными и апротонными растворителями [325]. Б реакциях типа [c.87]

    Суммарный эффект от взаимодействия оксидата с породой определяется следующими факторами влиянием растворителя, вьщелением тепла при реакции с породой, вьщелением СО2, образованием ПАВ и, наконец, увеличением вязкости вытекающего агента. Растворы оксидата снижают также набухающую способность рассмотренных типов глин (каолинит, бентонит) по сравнению с набуханием их в пластовой и водопроводной воде. С увеличением концентрации монокарбоновых кислот набухание глин уменьшается [17], Оксидат обладает повышенной бактерицидной активностью, обеспечивающей полное подавление сульфатвосстанавли-вающих бактерий при низких концентрациях (на 80-100% при концентрациях 0,001-0,05 мас.%). [c.17]

    Природа растворителя, в котором протекает та тгли иная реакция, йожет оказывать существенное влияние на ее механизм. Поскольку только что мы рассматривали гидролиз (или сольво-лиз) алкилгалогенида, можно oтмefить, что вероятность протекания этой реакции по механизму (но не 5 у2) тем больше, чем выше полярность используемого растворителя. Поэтому замена одного растворителя другим часто может приводить к изменению механизма процесса. Это изменение механизма обусловлено отчасти тем, что ионизация протекает легче в растворителе, имеющем высокую диэлектрическую проницаемость, а частично связано с более высокой степенью сольватации в каком-нибудь одном растворителе (например, в воде) по сравнению с другим раствррителем. Процесс сольватации сопровождается выделением значительных количеств энергии, которая может быть затрачена на ионизацию новых исходных молекул, что приводит к дальнейшему ускорению реакции. Большое значение подобных эффектов сольватации может быть подтверждено тем обстоятельством, что в газовой фазе, где сольватация ионов, разумеется, невозможна, реакции типа 5 хотя иногда и наблюдались, однако этот механизм значительно менее характерен, чем для реакций, протекающих в растворе. [c.95]

    Небезынтересным является вопрос о влиянии растворителя на восстановительную силу комплексных гидридов металлов. Для алюмогидрида лития такую зависимость проследить не удается, так как его высокая реакционная способность ограничивает выбор растворителей, сводя его лишь к простым эфирам, в которых он является мощным реагентом различия в восстановительной силе при этом незначительны. Напротив, использование борогидрида натрия, являющегося мягким восстановителем, позволяет заключить, что роль растворителя может быть чрезвычайно большой. Так, восстановление ацетона заканчивается за несколько минут в водном или спиртовом растворе и вовсе не наблюдается при проведении реакции в растворителях эфирного типа - ТГФ, диглиме и триг-лиме, хотя КаВН4 хорошо растворим в них. Следовательно, растворитель важен не только для достижения гомогенности среды. Роль его более сложна и может быть осмыслена лишь с учетом механизма реакции. [c.120]

    Они подробно обследовали влияние условий (температура, растворитель) на протекание реакции. Один из основных законов кинетики - закон действующих масс - был сформулирован шведскими учеными - математиком Гульдбергом и химиком Вааге в серии работ 1864-67 гг. Опираясь на результаты Бертло и Сен-Жиля и проделав самостоятельную большую работу, они сформулировали закон действующих масс как для реакции, протекающей в одном направлении, так и для обратимой реакции в состоянии равновесия. Закон был выведен в общем виде для реакции с любым числом реагентов вывод был основан на концепции молекулярных столкновений как события, предшествующего реакции столкнувшихся частиц. Для реакции типа [c.18]

    Разд. 2.2.6 и 2.6 были посвящены таким равновесным превращениям кислот и оснований Льюиса, в которых непосредственно участвует растворитель, выполняющий роль льюисовой кислоты (растворители-АЭП) или льюисова основания (раствори-тели-ДЭП). В этот раздел включены некоторые недавно описанные примеры влияния растворителей на равновесие типа льюисова кислота— льюисово основание, в котором растворитель непосредственно не участвует в реакции, а является всего лишь взаимодействующей с реагентами средой. [c.163]

    В рассмотренных примерах речь шла о гетеролизе С—О-или С—N-связей. В заключение будет приведен пример, описывающий влияние растворителей на реакцию типа кислота Льюиса— основание Льюиса между карбокатионом и карбанионом, образующимися при гетеролизе непрочной С—С-связи (см. также в разд. 2.6). [c.166]

    Влияние растворителей на реакции алифатического нуклеофильного замещения изучали Хьюз и Ингольд. Для этой цели они применили простую качественную модель сольватации, учитывающую только электростатические взаимодействия между ионами (или биполярными молекулами) и молекулами растворителя Как в начальном, так и в переходном состояниях [16, 44]. В за-аисимости от того, являются ли реагирующие частицы нейтральными, отрицательно или положительно заряженными, все реакции нуклеофильного замещения и элиминирования можно отнести к трем типам. Далее можно достаточно обоснованно предположить, что степень сольватации непосредственно связана с характером электрического заряда реагирующей час- гицы, а именно степень сольватации а) возрастает при повы-Щении величины заряда б) понижается при делокализации заряда в) при нейтрализации заряда снижается в еще большей степени. Отсюда следует, что общий эффект растворителя на реакции с участием нейтральных, положительно или отрицательно заряженных частиц можно суммировать следующим образом  [c.204]

    Что касается влияния растворителей на структуру активированных комплексов в 5м2-реакциях [см. уравнение (5.12) и табл. 5.4], то правила Хьюза — Ингольда позднее были уточнены Уэстауэем [498]. Правило сольватации Уэстауэя для 8.у2-ре-акций устанавливает, что замена одного растворителя на другой не приведет к изменению структуры соответствующего активированного комплекса, если атакующий нуклеофильный реагент и уходящая группа X несут одноименные заряды, как, например, в реакциях типа г и д из табл. 5.4 (их называют 5м2-реакциями типа I). Если же и X в активированном комплексе 5к2-реакции несут разноименные заряды, как в реакциях типа в и е из табл. 5.4 (их называют 5к2-реакцияти типа II), то замена растворителя приведет к изменению структуры соответствующего активированного комплекса. [c.216]

    В идеальном варианте таким путем удается найти количественную меру (эмпирический параметр) полярности растворителя, с помощью которой затем можно рассчитать абсолютные или относительные скорости или константы равновесия многих реакций, а также максимумы поглощения в различных растворителях. Поскольку такой эмпирический лараметр отражает суммарный эффект всех осуществляющихся в растворе межмолекулярных взаимодействий, то он описывает полярность растворителя точнее, чем любой конкретный физический параметр. При последующем применении эмпирических параметров полярности растворителя, однако, неявно допускается, что между растворителем и как стандартным, так и изучаемым веществом реализуются одни и те же типы взаимодействий. Очевидно, что это допущение может быть справедливым только тогда, когда речь идет о влиянии растворителей на сходные процессы. Следовательно, нельзя ожидать, что данная эмпирическая шкала растворителей, в основу которой положен конкретный эмпирический параметр и определенный стандартный процесс, будет универсальна и применима к любым реакциям и всем спектральным характеристикам. Всякое сравнение эффекта растворителя в изучаемом процессе с параметром полярности растворителя по сути дела напоминает сравнение со стандартным процессом. [c.488]

    Найдено, что в ряду растворителей от о-ксилола до хлороформа скорость реакции присоединения тетрацианэтилена к антрацену возрастает в 70 раз [125]. Замена этилацетатной среды на уксусную кислоту ускоряет реакцию между циклопентадиеном и акролеином в 35 раз [129]. Маловероятно, чтобы столь слабая чувствительность к природе растворителя была обусловлена биполярным активированным комплексом. Экспериментальные данные лучше согласуются со следующим механизмом сначала диен и диенофил образуют комплекс типа ДЭП/АЭП, который затем через электроноизбыточный поляризуемый активированный комплекс непосредственно превращается в продукт реакции. В некоторых случаях замена растворителя приводит к существенному изменению энтальпии активации реакции Дильса—Альдера. Определение относительных величин энтальпии сольватации исходных веществ в раствори-телях-ДЭП и АЭП методом калориметрии показало, что в растворителях-ДЭП стабилизированы реагенты, тогда как в более электроотрицательных растворителях-АЭП стабилизируется электроноизбыточный активированный комплекс [128]. Отсюда следует, что влияние растворителей на энтальпию активации реакции Дильса — Альдера с участием электронодефицитного малеинового ангидрида и тетрацианэтилена в качестве диено-фила можно объяснить электронодонорными (или электроноакцепторными) свойствами растворителя, при км сольватация диенофила возрастает в растворителях-ДЭП [128, 538—540] (см., однако, работу [130]). [c.238]

    Небольшое влияние растворителя на скорость такой реакции с дибромметаном показывает, что активированный комплекс, образующийся в процессе переноса атома брома, по степени разделения зарядов не отличается от реагентов. Дипольный момент молекулы типа пиридинильного радикала, вероятно, должен быть равен (О—10) 10 Кл-м (О—3 Д). Дибромметан также обладает умеренным дипольным моментом 5-10 Кл-м (1,5 Д). Учитывая небольшое влияние растворителей на скорость реакции, можно считать, что дипольный момент активированного комплекса равен (0—10) -10- > Кл-м [214, 570]. [c.261]

    В завершение раздела обсудим влияние растворителей на реакции диспропорционирования радикалов. Небольшие эффекты растворителей обнаружены в реакции диспропорционирования 2,б-ди-7 рет -бутил-4-изопропилфеноксильного радикала на соответствующие хинонметид и фенол [уравнение (5.73)] [225]. При переходе к более полярным растворителям энтальпия активации возрастает с 21 кДж-моль в циклогексане до 32 кДж-моль в бензонитриле, однако в силу компенсирующего влияния изменения энтропии активации состав среды почти не сказывается на скорости реакции. Образование активированного комплекса можно рассматривать как присоединение двух биполярных частиц по типу голова к хвосту . Для образования такого активированного комплекса необходима десольватация одного из фе-ноксильных радикалов, поэтому в среде, в которой радикалы сильно сольватированы, энтальпия активации должна быть относительно высокой, чтобы обеспечить необходимую энергию десольватации. В таких случаях должно наблюдаться наибольшее повышение энтропии. Линейная зависимость, обнаруженная между ДЯ и (бг—1)/вг, позволяет приписать эффекты растворите- [c.267]

    В отличие от довольно простой теории реакций в газовой фазе расчет констант скоростей реакций в жидкой фазе чрезвычайно сложен. Причина этого заключается в первую очередь в сложности многочисленных возможных межмолекулярных взаимодействий между растворителем и растворенным веществом (ом. разд. 2.2). При изучении кинетики реакций в растворе всегда возникает проблема выбора конкретного свойства растворителя, которое можно было бы использовать в математических выражениях, связывающих это свойство со скоростью реакции. Другая проблема заключается в выборе хара1ктеристик реагирующих молекул, которые необходимо учитывать при определении влияния растворителя на их реакционную способность. Количественная оценка влияния растворителей на константу скорости к элементарной реакции сводится к нахождению функций типа [c.272]

    Было исследовано влияние температуры и типа литийорганического соединения на выход продукта металлирования бензотиазола. Эта реакция отличается от других реакций металлирования тем, что она протекает с большой скоростью и что для предотвращения разложения получаемого вещества необходимо поддерживать низкую температуру. Было установлено, что при применении метиллития, фениллития и я-бутиллития выходы продуктов металлирования превышают 68% наилучший выход (89,7 7о) был получен в случае применения я-бутиллития при —75 при условии, что немедленно после прибавления всего количества литийорганического соединения реакция будет прервана [90]. Указанные исследования, повидимому, являются единственными, в которых были сделаны попытки найти оптимальные условия металлирования определенных веществ литийорганическими соединениями. Результаты этих исследований свидетельствуют о том, что всякий раз, когда важным является получение высокого выхода, имеет смысл исследовать влияние растворителя, температуры и природы металлирующего агента. В обычных же ре- [c.358]

    Дегидробензол экзотермично реагирует с алкенами, например со (133) как по пути [2 + 2]-циклоприсоединения, так и по пути енового синтеза , если в олефине имеется аллильный водород [схема (73)]. Циклоприсоединение протекает нестереоспецифично, поскольку из чистых цис- или транс-алкенов образуется смесь цис-и транс-продуктов, однако до некоторой степени реакция стереоселективна, поскольку основной продукт в каждом случае сохраняет стереохимию алкена [120, 121]. Это указывает на ступенчатый механизм реакции, проходящей через интермедиат типа диполярной или дирадикальной частицы, время жизни которой достаточно велико, чтобы происходило вращение вокруг связи до образования второй связи с кольцом. Было выдвинуто множество предположений относительно дирадикальной или диполярной природы интермедиата, и несколько групп исследователей пришли к заключению, что по крайней мере для простых незамещенных алкенов отсутствие влияний растворителя и перегруппировок интермедиата указывает на дирадикальный характер [122]. Постадий-ная природа реакции согласуется со строением дегидробензола, имеющего симметричное синглетное основное состояние, которое исключает возможность синхронного [ 2з + л2з)-подхода [120]. Последние расчеты показали, что поверхность потенциальной энергии реакции дегидробензола с этиленом имеет сложный профиль с тремя различными долинами, одна из которых представляет собой тупик и может быть отнесена к интермедиату типа (134), [c.613]


Смотреть страницы где упоминается термин Влияние растворителя на реакции типа: [c.6]    [c.412]    [c.20]    [c.224]    [c.1551]    [c.32]    [c.33]    [c.87]    [c.4]    [c.243]    [c.245]    [c.349]    [c.48]   
Органическая химия (1964) -- [ c.12 , c.247 ]

Органическая химия (1964) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Растворители реакции и типом



© 2024 chem21.info Реклама на сайте