Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифференциальных уравнений системы метод решения Рунге Кутта

    Для нахождения приближенного решения системы дифференциальных уравнений можно использовать метод Рунге — Кутта и метод Эйлера. [c.123]

    Для решения системы дифференциальных уравнений методом Рунге — Кутта необходимо выполнить вычисления в следующем порядке  [c.124]

    Используют стандартную программу решения системы обыкновенных дифференциальных уравнений первого порядка (например, методом Рунге — Кутта или методом Адамса) с автоматическим выбором шага интегрирования в зависимости от требуемой точности вычисления. Эта программа позволяет определить значения концентрации х ( р, 0) и температуры < (Ьр, 0) в совокупности точек, на которые разбивается интервал (О — Ь) интегрирования. [c.151]


    Решение системы из двух дифференциальных уравнений методом Рунге-Кутта с фиксированным шагом [c.98]

    Оценим вреия решения задач математического моделирования целиком на ЦВМ с таким быстродействием. Ддя решения системы дифференциальных уравнений, например, методом Рунге-Кутта с заданной точностью обычно требуется [c.504]

    Нами выполнены расчеты результатов про-цесса по математическому описанию при тех же входных величинах, что и в промышленном аппарате с использованием стандартной программы решения системы дифференциальных уравнений методом Рунге—Кутта для ЭВМ М-20. Результаты расчетов при нескольких величинах ко показаны в табл. 8.2, где для удобства сравнения приведены и выходные опытные данные. При подборе ко в качестве исходного значения принята величина, рассчитанная на основании работы [147]. [c.181]

    Решение системы линейных уравнений с учетом условий однозначности и соотношений, описывающих зависимость параметров процесса от искомых величин и, Т к х, возможно только численными методами, для чего дифференциальные уравнения в частных производных (6.101) — (6.103) записывались в конечно-разностном виде [33] по переменной координате /. Полученная система обыкновенных дифференциальных уравнений решалась методом Рунге — Кутта, для чего алгоритм расчета был реализован в виде ФОРТРАН-программы. [c.190]

    Решение полученной системы уравнений на ЭВМ при известных значениях Параметров К, Ту, Т , Та, /Со. о и заданных начальных условиях осуществляется по программе, в которую входит стандартная подпрограмма интегрирования дифференциальных уравнений по методам Рунге—Кутта, Хэмминга или Адамса [c.155]

    Все кинетические константы, входящие в систему уравнений (6.5), были определены экспериментально. Решение системы дифференциальных уравнений осуществляли численным методом Рунге-Кутта 4-го порядка. [c.175]

    Блок-схема алгоритма приведена в работе [36]. Для численного интегрирования системы обыкновенных дифференциальных уравнений, описывающих процесс каталитического риформинга, первоначально использовался метод Рунге—Кутта. Разработанная программа позволила эффективно интегрировать дифференциальные уравнения. Однако, как показала практика, на расчеты затрачивалось много времени. Для сокращения времени счета была составлена другая программа, использующая более быстрый метод Эйлера. Сравнение точности вычислений по этим двум методам решения системы дифференциальных уравнений приведено в таблице III. 2. Данные таблицы показывают, что [c.126]


    Поиск минимума функции Ф по переменным ка, Е осуществлялся градиентным методом. В процессе решения задачи было установлено, что Ф имеет овраги . Для движения по их дну применялся метод оврагов . Частные производные Ф(йо,, Ё) находились по разностной схеме. Решение системы дифференциальных уравнений (XI, 36), (XI. 37) производилось методом Рунге — Кутта с шагом, равным Vie объема реактора. Затраты машинного времени ЦВМ типа М-20 на поиск минимума составляли не менее 1,5—2 ч при достаточно хороших начальных приближениях. Минимальное значение Ф при использовании данных табл. XI. 4 и XI. 5 равно 4,2. [c.306]

    Задача расчета переходного процесса состоит в решении дифференциальных уравнений, описывающих состояние системы. При использовании цифровых вычислительных машин с этой целью применяют методы численного интегрирования дифференциальных уравнений. Достаточно широкое распространение при расчетах переходных процессов на ЭВМ получили методы Рунге— Кутта, Хэмминга и Адамса. Рассмотрим сущность этих методов на примере решения дифференциального уравнения первого порядка [c.154]

    Эта математическая модель является упрощенной дополнительная подача пара в реактор-смеситель не учитывается, не рассматривается процесс кристаллизации гипса. Система нелинейных дифференциальных уравнений второго порядка (236), (257)—(259) аналитического решения не имеет. При реализации ма тематической модели реактора-смесителя поэтому были использованы численные методы интегрирования [359], в частности метод Рунге-Кутта четвертого порядка точности, дающий малую ошибку и легко программируемый (в нашем случае при моделировании на ЭВМ Наири-2 использовалась стандартная программа из библиотеки СП машины). [c.181]

    Сводка уравнений модели была дана в разд. 8.3. Для решения системы дифференциальных уравнений можно воспользоваться методами Рунге — Кутта или методами предсказания с коррекцией [55]  [c.211]

    Моделирование процесса эмульсионной полимеризации на ЦВМ. Для численного решения задачи (3.47)—(3.63) с начальными, граничными условиями и условиями сопряжения (3.64) — (3.68) система дифференциальных уравнений приводилась к безразмерному виду и решалась методом прямых с применениеи процедуры Рунге—Кутта—Мерсона на ЦВМ Минск-32 . [c.156]

    Математическое описание модели [уравнения (10.5), (10.7) и (10.10)] приведено в разд 10.3. В гл. 8 уже упоминалось, что для решения системы обыкновенных дифференциальных уравнений могут быть использованы как метод Рунге — Кутта, так и методы предсказания с коррекцией. Из соображений, уже высказанных в гл. 8, был выбран первый из них. [c.240]

    Таким образом, система кинетических уравнений пиролиза углеводородов представляется в виде двух взаимосвязанных (через независимые переменные—компоненты реакционной смеси) систем — дифференциальных уравнений для молекулярных углеводородов (система Д) и алгебраических уравнений для радикалов (система А). Для решения каждой из этих систем могут быть использованы стандартные методы решения. В частности, для решения системы Д был использован метод Рунге — Кутта четвертого порядка с автоматическим выбором шага интегрирования, а для системы А — метод простой итерации [108, 109]. Решение системы А выполняется в тех же точках, что и для системы Д. [c.46]

    Программа моделирования на цифровой ЭВМ. Программу моделирования реактора на цифровой ЭВМ применяли для интегрирования уравнений материального и теплового баланса реактора идеального вытеонения. Численные решения системы нелинейных дифференциальных уравнений получали методом Рунге-Кутта четвертого порядка. Всю систему дифференциальных уравнений интегрировали по длине реактора и получали концентрационные и температурные профили. Основная программа была управляющей, а уравнения скорости реакций и термодинамические характеристики вычисляли в подпрограмме 5иЬги11пе. В этой подпрограмме реализуется печать результатов каждого шага интегрирования, содержащих информацию по составу и температуре. Кроме того, рассчитывали и печатали значения выходов, селективностей и степеней превращения. Таким образом, имелась подробная информация по ходу моделирования для широких диапазонов изученных условий. [c.292]

    Матрица, содержащая таблицу значений решения задачи Кощи на интервале от х 1 до х2 для системы обыкновенных дифференциальных уравнений, вычисленную методом Рунге-Кутта с переменным щагом и начальными условиями в векторе v, причем правые части системы записаны в D, п — число шагов, к — максимальное число промежуточных точек решения, s — минимально допустимый интервал между точками (только для Malh ad Professional) [c.452]


    Матрица решения системы обыкновенных дифференциальных уравнений численным методом Рунге—Ку гга на интервале от х1 до х2 с переменным шагом, при минимальном числе шагов п, причем правые части уравнений в символьной форме задаются в векторе D, а начальные условия — в векторе V (только для Math ad Professional) Матрица решения системы обыкновенных дифференциальных уравнений методом Рунге—Кутта на интервале от х1 до х2 при фиксированном числе шагов п, причем правые части уравнений записаны в символьном векторе D, а начальные условия — в векторе v [c.453]

    Рассмотрим подробно решение обратной задачи в среде MS Ex el. Для решения задачи Коши системы двух дифференциальных уравнений используем метод Рунге—Кутта четвертого порядка. Расчеты будем проводить по формулам  [c.275]

    Построена упрощенная математическая модель кинетики фотохимического синтеза четырех основных изомеров гексахлорциклогексана в изотермических условиях. Модель представляет собой систему из 20 лилейных дифференциальных уравнений псевдопервого порядка. Решение системы уравнений проводи лось численным методом Рунге—Кутта на ЭВМ. Полученная модель удовлетворительно аппроксилирует опытные да1тые в области, представляющей практический интерес. [c.123]

    Существенным моментом при создании специализированных пакетов прикладшхх программ является использование одного или ограниченной совокупности методов для решения широкого класса задач. Значительный опыт по разработке таких систем накоплен при решении дифференциальных уравнений, для описания динамических систем (расчет траекторий полета спутников, баллистика и т. д.). К таким системам можно отнести системы MIDAS [17], MIMI [18], в основе которых используются формулы Рунге— Кутта различного порядка. [c.275]

    Результаты расчетов. Численное решение полученной системы уравнений осуществляется на основе комбинации явного (метод Рунге — Кутта) и нолунеявного (метод Михельсона) методов решения обыкновенных дифференциальных уравнений. Размерность системы определяется дифференциальными уравнениями, описывающими как непрерывную (17)—(20), так и дискретную (21) —(23) фазы для каждого класса капель. По мере исчезновения г-го класса размерность уменьшается на число уравнений, описывающих его. [c.77]

    У1 ( А + 1) У ( а) б г 4, г ( 2, г + 3, /)) = П. Программа М.АТ22 дает решение системы обыкновенных дифференциальных уравнений первой степени методом Рунге — Кутта. [c.245]

    Если попытаться решить жесткую систему дифференш1альных уравнений, описываюшую вполне реальную химическую реакцию, обычными численными методами, например широко распространенным в естественных науках методом Рунге — Кутта, то, как правило, получаются ложные результаты. Если интегрировать дифференциальные уравнения с очень малым шагом, то даже при больших затратах машинного времени решение соответствует незначительным изменениям в системе, т. е. очень малой степени преврашения. [c.395]

    I. Вычисление характеристик периодического процесса по уравнениям типа (1.36), (1.37) и т.п. (в зависимости от вида кинетического модуля) с использованием методов численного решения систем обыкновенных дифференциальных уравнений (Рунге — Кутта, Адамса или других из имеющихся в системе математического обеспечения используемой ЭВМ). Отметим, что в качестве начальных условий при решении по уравнениям (1У.2) должны быть выбраны значения выхода предыдущего реактора [c.140]

    Система уравнений решалась на цифровой вычислительной маш не при использовании метода Рунге-Кутта. Для решения дифференциальных уравнений величина Ко( е)п, определяющая концентрацию в органической фазе в стационарном состоянии, определялась экспериментально. Причем, (/Сса )п приближалась к Коар) эксп только с увеличением числа ячеек. [c.138]

    О численном решении задачи об автоволне в нестационарной постановке. В качестве метода решения начально-краевой задачи (1.8) был выбран метод прямых [29]. Использовалась аппроксимация второго порядка точности по пространственной переменной. Полученная система обыкновенных дифференциальных уравнений интегрировалась с помош,ью неявной схемы Рунге-Кутта 5-го порядка точности, программная реализация которой эффективно учитывала ленточный вид матрицы Якоби правых частей. [c.64]

    В математическом отношении расчет периодической ректификации многокомпопентной смеси в приближении теоретической тарелки сводится к интегрированию обширной системы обык]к )вениых дифференциальных уравнений. На практике, главным образом, используются два метода численого решения задачи Коши машинные варианты метода Рунге—Кутта [1, 2] и неявный одношаговый конечно-разностный метод, имеющий в основе квадратурную формулу трапеций [3, 4]. В первом случае известные трудности представляет нахождение явного вида прои родной от температуры по времени, кроме того, система уравнений периодической ректификации относится к типу жестки.х систем, для которых методы Рунге—Кутта могут потребовать очень малого шага интегрирования или вообще ие будут работать [5]. Неявный метод более подходит для интегрирования жест.ких систем, но требуег большего объема вычислений иа каждом шаге, поскольку сводит решение нестационарной задачи к последовательному решению нелинейных систем алгебраических уравнений. [c.62]


Смотреть страницы где упоминается термин Дифференциальных уравнений системы метод решения Рунге Кутта: [c.329]    [c.41]   
Компьютеры Применение в химии (1988) -- [ c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Дифференциальных уравнений системы

Методы решения систем уравнений

Рунге

Рунге Кутта

Рунге—Кутта метод решения уравнений

Уравнение дифференциальное

Уравнение решения

Уравнение система



© 2025 chem21.info Реклама на сайте