Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уравнение нелинейные методы решения

    В гл. 1 было показано, что математическое описание типовых процессов обычно выражается определенным классом уравнений (конечные системы уравнений, системы дифференциальных уравнений и т. д.), решение которых возможно с единых методологических позиций. Примерами такого подхода являются методо-ориентированные пакеты прикладных программ, в основе которых используется определенный метод, обладающий достаточным быстродействием и уверенной сходимостью. В примерах 1—4 (см. гл. 1) показано, что центральным звеном пакета, позволяющего решать системы дифференциальных и конечных уравнений, является метод решения системы линейных алгебраических уравнений. При этом нелинейные уравнения некоторым образом приводятся к ли-нейному виду и решаются с использованием итеративных схем. [c.301]


    Поскольку эти уравнения нелинейны, их решение приходится искать численными методами. Кочрэн [5] дал оригинальное решение этих уравнений, проводя разложение в ряды при малых и больших значениях Неизвестные коэффициенты разложения определялись из условия согласования получающихся рядов при промежуточных значениях Однако значительно проще решить систему нелинейных дифференциальных уравнений прямыми численными методами (приложение В). Решение уравнений (96-10), удовлетворяющее условиям (96-11), показано на рис. 96-1. После того как профили скоростей уже определены, давление можно получить путем интегрирования последнего из уравнений (96-10)  [c.314]

    Исследовать внутреннюю диффузию нри конечной скорости адсорбции гораздо труднее, поскольку мы сразу же сталкиваемся с нелинейными дифференциальными уравнениями. Общий метод, описанный в конце предыдущего раздела, можно применить к решению уравнений с кинетическими зависимостями типа (VI.20). Получить какие-либо общие результаты здесь, однако, трудно, вследствие большого числа параметров, входящих в кинетическую зависимость, и необходимости численного интегрирования. [c.141]

    Таким образом, несмотря на относительную простоту формального математического аппарата вариационного исчисления, использование его для решения практических задач связано с преодолением значительных вычислительных трудностей, обусловленных, в основном, необходимостью решения краевых задач для нелинейных диф -ференциальных уравнений. Попыткой избежать этих трудностей и являются прямые методы решения вариационных задач, некоторые из которых приведены ниже. [c.220]

    Таким образом, следует еще раз подчеркнуть, что методы нелинейного программирования служат не только для решения специфических задач, ио, кроме того, являются необходимым средством, к которому приходится обращаться и при решении оптимальных задач другими методами, а также задач вычислительной математики. Простейший пример — проблема решения системы нелинейных уравненнй с большим числом неизвестных, где практически единственными общими методами решения служат методы нелинейного программирования. [c.547]

    Если же хотят применить аналитический метод, то для каждой отдельной системы нелинейных дифференциальных уравнений нужно разрабатывать собственные методы решения. Много работ такого типа было уже проведено, однако наши сведения по указанному вопросу весьма поверхностны. Хиггинс в прекрасном обзоре на эту тему приводит обширный список возможных подходов к решению. Здесь кратко дано несколько методов решения нелинейных систем. [c.106]


    Все существующие методы решения систем нелинейных уравнений сводятся к итерационным процессам, их можно подразделить на три фуппы. Первая фуппа методов - это метод простых итераций и его модификации. Вторая фу ппа методов - это метод релаксации и его модификации. [c.18]

    Конкретная структура математических уравнений и способов обработки данных зависит от экспериментального метода проведения кинетических исследований. Для дифференциальных реакторов это будет система алгебраических уравнений, для изотермических интегральных реакторов — система дифференциальных уравнений, сравнительно просто линеаризуемых в отношении констант, для неизотермических интегральных реакторов — система дифференциальных уравнений, нелинейных относительно констант. Следует отметить, что успехи в области решения нелинейных задач химической кинетики и поисковых методов [4, 15—17] позволили создать эффективные алгоритмы, обеспечивающие практически одинаковую достоверность в определении структуры кинетических уравнений и входящих в них констант для любого экспериментального метода кинетических исследований. [c.77]

    Отметим, что хотя методы решения систем нелинейных алгебраических уравнений, описывающих стационарные процессы в аппаратах идеального перемешивания, не вызывают принципиальных сложностей, такое решение достаточно трудоемко. Поэтому иногда может оказаться целесообразным переход к решению нестационарной модели, описываемой дифференциальными уравнениями. Например, вместо решения алгебраической системы (см. табл. П-З) [c.144]

    Рассмотрим в связи с этим методы решения вариационных задач, позволяющие избежать их вырождения . Отметим, что формулирование функционала (VI-40) определяется при постановке задачи, так что иногда можно предусмотреть нелинейную связь 1 ж х - В большинстве же реальных ситуаций зависимость / и х не выражается явно- Если, например, / определяет выход некоторого продукта, рассчитываемого в результате решения математического описания процесса, то определение в явном виде производной f по х невозможно. В этом случае целесообразно определить коэффициенты уравнения (VI-42)  [c.213]

    Поиск оптимальной стратегии решения линейных, нелинейных или трансцендентных систем уравнений математических моделей ХТС вида (П 6), (И, 7) или (И, И) осуществляют путем исследования топологических свойств ДИГ, отображающих характеристические особенности этих систем уравнений. Стратегию решения систем уравнений ХТС методом декомпозиции и разрывов при некотором наборе выходных переменных отображают в виде ациклического или циклического информационного графа. Оптимальным циклическим информационным графом системы уравнений называют такой циклический граф, для которого размер максимального замкнутого контура графа наименьший. Если символическая математическая модель ХТС представляет собой совместно замкнутую систему уравнений, то информационный граф является циклическим. [c.98]

    Матричные методы решения систем нелинейных уравнений можно разделить на две группы по способу линеаризации. К первым относятся методы, в которых линейность достигается за счет использования численных значений параметров, определяющих нелинейность, с предыдущих итераций. Являясь методами нулевого порядка, они в ряде случаев обладают слишком медленной сходимостью или вообще не обеспечивают решения. [c.134]

    Таким образом, в основе метода решения системы нелинейных уравнений лежит многократное решение системы линейных уравнений. [c.271]

    Система уравнений (7.116) — (7.119) является замкнутой и может быть решена одним из методов решения нелинейных уравнений. Так, в [48] для решения уравнений материального баланса [c.309]

    Распространенным способом решения системы нелинейных алгебраических уравнений является метод Ньютона — Рафсона, в основе которого используется линеаризация исходной системы в окрестности некоторого начального приближения с последующим уточнением решения. Линеаризация производится разложением функции в ряд Тейлора до членов первого порядка включительно. [c.301]

    Рассмотренный метод решения системы нелинейных алгебраических уравнений использован в методо-ориентированном пакете программ (см. с. 57). [c.304]

    В определении оптимальной стратегии исследования сложных ХТС особое место занимает разработка методов решения многомерных систем нелинейных уравнений и обеспечения сходимости итерационных процессов вычислений. Поскольку эти вопросы представляют специальный интерес, в настоящей главе о них будут даны только некоторые основные понятия. [c.213]

    Выражение для конфигурационного множителя д заимствуется из теории растворов молекул разного размера (формула Гуггенгейма), так что зависимость от величин N 1 определяется в явном виде. С помощью выражения (XIV. 133) и известных связей статистической суммы с термодинамическими функциями нетрудно вывести формулы для расчета функции смешения. В уравнения для функций смешения войдут энергии взаимообмена характеристики размеров молекул Га и Га, координационное число решетки и наиболее вероятные значения для раствора и чистых компонентов. Это должны быть величины, удовлетворяющие уравнениям (Х1У.131) и (Х1У.132). Таким образом, основная задача при расчетах по теории Баркера состоит в определении энергетических параметров и решении системы уравнений для нахождения величин (уравнения нелинейные, и решение проводится методом последовательных приближений). [c.433]


    Методы исследования функций классического анализа (см. главу III) представляют собой наиболее известные методы решения несложных оптимальных задач, с которыми инженер знакомится при изучении курса математического анализа. Обычной областью исиользованин данных методов являются задачи с известным аналитическим выражением критерия оптимальности, что позволяет найти не очень сложное, также аналитическое выражение для производных. Полученные приравниванием нулю производных уравнения, определяющие экстремальные решения оптимальной задачи, крайне редко удается решить аналитическим путем, поэтому, как правило, применяют вычислительные машины. При этом надо реншть систему конечных уравнений, чаще всего нелинейных, для чего ириходитсп использовать численные методы, аналогичные методам нелинейного программирования (см. главу IX, стр. 530). [c.30]

    Заслуживают внимания прямые методы решения задач оптимизации функционалов (см. главу V, стр. 220), обычно позволяю1цне свести исходную вариационную задачу к задаче нелинейного нро-грамкшрования, решить которую иногда проще, чем краевую задачу для уравнения Эйлера. [c.31]

    Специфической особенностью методов решения оптимальных задач (за исключением методов нелинейного програмкшрования) является то, что до некоторого этана оптимальную задачу решают аналитически, т. е. находят определенные аналитические выражения, например, системы конечных или дифференциальных уравнений, откуда уже отыскивают оптимальное решение. В отличие от указанных методов при использовании методов нелинейного программирования, которые, как отмечалось выше, могут быть названы прямыми, применяют информацию, получаемую при вычислении критерия оптимальности, изменение величины которого служит оценкой эффективности того или иного действия. [c.34]

    Задачи, стоящие перед теорией расчета систем автоматического регулирования, решаются для линейных и нелинейных систем по-разному. В первом случае для систем невысокой степени сложности пригодны аналитические методы решения дифференциальных уравнений классическими и сокращенными способами Часто применяются графические методики с использованием частотных характеристик (Бодэ - и НайквистЗ. ) и [c.96]

    Из приведён яого литературного обзора следует, что надёжность математической модели зависит от вы(5ора метода решения системы нелинейных уравнений, описывающих пропесс ректификации нефтяных смесей. Исходя из этого, ни е приводится краткая характеристика существующих методов решения сисгем нелинейных уравнений. [c.18]

    Классификация методов решения систем нелинейных уравнений, описьшающих процесс ректификации нефтяных смесей [c.18]

    Выбор независимых пер к1епных и методов решения системы нелинейных уравнений, описывающих процесс ректи( икации в сложны.г разделительные системах [c.50]

    Хафтон предлагает два приближенных метода решения нелинейного уравнения один для малых значений к, второй — для малых значений [c.223]

    Система Хартри — Фока (51) является системой нелинейных интегродифференциальных уравнений. Нелинейность уравнений означает, что их решения ф1 есть собственные функции оператора Р, который, в свою очередь, определяется через эти орбитали ф/. Эта особенность уравнеций Хартри — Фока позволяет решать их методом итераций. Однако мы не будем останавливаться здесь на вычислительной стороне дела. [c.79]

    Ортега Дж., Рейнболдт В. Итерационные методы решения нелинейных систем уравнений со многими неизвестными/Пер. с англ. М. Мир, 1975. 558 с, [c.263]

    Алгоритмически задача выбора технологической схемы состоит в разработке или выборе методов ее анализа, оценки, оптимизации и синтеза. На этапе анализа составляются уравнения математического описания, задаются переменные процесса и схемы, и в результате решения получается информация о потоках, температурах, давлении, составах, размерах и т. д. Оценка состоит в совмест-ном использовании информации с предыдущего этапа и экономических данных для определения целевой функции. Оптимизация состоит в поиске наилучшего набора переменных процессов. Традиционно разработка технологических схем проводится на основании итерационного выполнения указанных этапов, и лишь в последнее время стало уделяться внимание этапу синтеза, который призван объединить в себе все предыдущие этапы на основе некоторого метода. Известно большое число методов синтеза [4, 52], основанных на различных подходах, и многим из них присуща необходимость использования некоторого метода решения систем нелинейных уравнений или метода оптимизации. Последние используются для сведения материального и теплового баланса схем. Задачи решения систем уравнений и минимизации некоторого функционала взаимосвязаны и могут быть сведены одна к другой. Например, условием минимума функции Р х) является равенство нулю частных производных дР1дх1 = О, 1 = 1, 2,. . ., п, а система уравнений f х) = О, I = 1, 2,. . ., п, может быть решена путем минимизации соответствующим образом подобранного функциона- [c.142]

    Ортега Дж., Рейнболт К. Итерационные. методы решения нелинейных систе.м уравнений со многими неизвестными. М. Мир, 1975. 560 с. [c.174]

    Алгоритм проектного расчета. Как отмечалось ранее, математическое описание колонны представляет собой систему нелинейных алгебраических уравнений высокой размерности, решение которой производится итеративными методами, причем скорость сходимости зависит как от начального приближения, так и от режима работы колонны. Поэтому исключение итеративного расчета по отдельным переменным в процессе поиска оптимального решения позволит существенно сократить объем вычислений. Ниже предлагается метод расчета, основанный на формулировании задачи как системы нелинейных разностных уравнений с граничными условиями, решение которой осуществляется по методу квазилинеаризацпп с использованием принципа суперпозиции. Особенностью метода является пригодность для расчета колонн любой сложности с учетом всевозможных алгоритмов описания отдельных явлений (фазовое равновесие, кинетика массопередачи и т. д.), а также возможность исключения итерации по поиску флегмового потока, обеспечивающего заданное качество продуктов разделения при известном числе ступеней разделения. Оптимальное положение тарелки питания в смысле некоторого критерия (например, термодинамического или технологического) определяется непосредственно в ходе потарелоч-ного расчета колонны. [c.328]

    Методы структурной оптимизации. Они предполагают на первом этапе определение способов реализации химического производства (выбор альтернативных способов ведения процесс на отдельных стадиях) и создание на их основе некоторой интегрально-гипотетической технологической схемы, включающей все возможные варианты распределения материальных и энергетических ресурсов. Оптимизация ведется по специально определенным структурным параметрам распределения потоков, значения которых обычно задаются в диапазоне от О до 1 и характеризуют разделение или разветвление некоторого выходного потока. Конечные значения параметров и определяют технологическую схему. Нулевые значения отдельных из них свидетельствуют об отсутствии соответствующей связи аппаратов. С математической точки зрения задача синтеза представляет собой решение систем нелинейных уравнений, соответствующих описанию отдельных элементов (подсистем), и уравнений, отражающих структурные взаимосвязи между этими элементами (подсистемами). Основными методами решения являются методы нелинейного программирования. В виду высокой размерности системы уравнений поиск оптимального решения (технологической схемы) представляет определенные трудности вследствие многоэкстремальности и нелинейности задачи. [c.438]

    Трудность создания общей моделирующей программы. Отсутствие надежных и эффективных методов решения высокоразмерных систем нелинейных уравнений. Большие требования к ОЗУ ЭВМ [c.590]

    Решение задачи идентификации модели нелинейного химико-технологического процесса [10]. Построение адекватной модели технологического процесса предполагает адекватное отражение гидродинамической структуры потоков в аппарате и адек-кватное описание кинетики процесса. В настоящее время решение первой задачи сводится в основном к обработке кривых отклика системы на типовое (импульсное, ступенчатое, гармоническое) или произвольное (детерминированное, случайное) возмущение по концентрации индикатора в потоке с использованием методов теории линейных систем автоматического регулирования. Эти методы, подробно рассмотренные выше, ограничиваются линейным случаем и не пригодны для решения нелинейных задач. Решение задачи идентификации линейных кинетических уравнений не представляет математических трудностей и ограничивается в основном использованием аппарата линейной алгебры. [c.461]

    В зависимости от способа минимизации штрафных функций МАВ или МП вычислительные методы идентификации делятся на две группы прямые и косвенные. Первую группу составляют методы непосредственной минимизации штрафной функции на каждом шаге интервала наблюдения. К ним относится градиентный метод и его многочисленные модификации, метод стохастической аппроксимации и др. Второй подход к решению задачи идентификации состоит в применении принципов теории оптимального управления на каждом шаге итерации. В частности, для минимизации штрафных функций применяется принцип максимума Понтрягина, метод неопределенных множителей Лагранжа и др. При этом соответствуюш ая система канонических уравнений с необходимыми граничными условиями образует характерную нелинейную двухточечную (начало и конец интервала наблюдения) краевую задачу (ДТКЗ), решение которой представляет искомую оценку для заданного интервала наблюдения. Вычислительные методы решения указанной ДТКЗ образуют группу так называемых непрямых вычислительных методов решения задач идентификации. К ним можно отнести метод квазилинеаризации, метод инвариантного погружения, метод прогонки и др. [c.494]

    В результате из необходимых условий экстремума при условиях (56) получено недостававшее нам ранее уравнение. Теперь можно решать систему уравнений (56), (8) относительно неизвестных 1п любым методом решения систем нелинейных уравнений. Мы воспользуемся методом Ньютона. Производйьхе от (56) но 1п Ь суть элементы / = 1, 2,. . ., т—2), а [c.178]


Смотреть страницы где упоминается термин Уравнение нелинейные методы решения: [c.460]    [c.39]    [c.88]    [c.10]    [c.13]    [c.21]    [c.51]    [c.93]    [c.470]    [c.112]    [c.122]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Поля метод решения нелинейного уравнения

Введение. Консервативные автономные системы. Линейная неавтономная система. Линейные дифференциальные уравнения с периодическими коэффициентами. Решение автономных уравнений со слабой нелинейностью методом возмущений. Асимптотическое разложение. Метод усреднения Адиабатические инварианты

Выбор независимых переменных и методов решения системы нелинейных уравнений, описывающих процесс ректификации в сложных разделительных системах

Квазиньютоновские методы 1-го рода для решения разреженных систем нелинейных уравнений

Квазиньютоновский метод с памятью решения разреженных систем нелинейных уравнений

Классификация методов решения систем нелинейных уравнений, описывающих процесс ректификации нефтяных смесей

Методы решения систем нелинейных уравнений

Определение аналитических производных при решении системы нелинейных уравнений, описывающий процесс ректификации, дифференциальным методом при закрепленных тепловых нагрузках

Определение аналитических производных при решении системы нелинейных уравнений, описывающих процесс ректификации, дифференциальным методом при закрепленных отборах продуктов разделения

Применение методов решения систем нелинейных уравнений

Решение нелинейных дифференциальных уравнений с применением метода неявных функций

Сравнение метода итераций в пространстве управлений и метода сведения задачи к решению систем нелинейных конечных уравнений

Уравнение решения



© 2025 chem21.info Реклама на сайте