Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт открытие

    Отсюда следовало, что не обязательно зн ть содержание всех элементов во всех минералах, например, сколько кобальта находится в каждом никелевом минерале. Пользуясь методом соотношений , т. е. зная величину обычного для Со и N1 соотношения, можно, определив никель, рассчитать содержание кобальта (его в 10 раз меньше, чем N1). Используя открытый как раз в это время русским химиком Л. А. Чугаевым реактив на никель — диметилглиоксим, который позволяет с большой точностью быстро определять содержание никеля (путем осаждения ярко-розового осадка диметилглиоксимата никеля), Кларк определил этим чувствительным методом содержание N1 (и тем самым кобальта) в большом числе минералов. [c.239]


    Реактивом на ионы Ni " является диметилглиоксим (см. стр. 256). Если в растворе имеются ионы Fe " ", то их следует связать так же, как при открытии кобальта. [c.288]

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]

    Как показали наблюдения, при небольшом изменении в составе катализатора и применении водоотнимающих средств процесс полностью изменялся. Продуктом реакции являлась уже не уксусная кислота, а ее смесь с уксусным ангидридом. Это открытие было сделано одновременно и, по-видимому, независимо в Канаде и Германии. Первоначально условия процесса изменили в том отношении, что в качестве катализатора стали применять смеси ацетатов, например марганца и никеля, марганца и меди или кобальта и меди [5]. Затем для удаления воды, образующейся одновременно с уксусным ангидридом по реакции [c.335]

    Способность водорода присоединяться по месту кратных углеродных связей известна уже давно. Еще в середине XIX в. М. Фарадей, проведя реакцию взаимодействия водорода с этиленом над платиной, осуществил превращение этилена в этан. Однако долгое время разрозненные наблюдения отдельных авторов казались лишенными интереса. Лишь после того, как было открыто замечательное свойство некоторых восстановленных металлов, например никеля, кобальта, меди [1], способствовать гидрированию, т. е. насыщению водородом алифатических и ароматических кратных связей, каталитическое гидрирование начало быстро развиваться. В настоящее время им широко пользуются в исследовательской работе для изучения числа и характера насыщенных связей, определения строения неизвестных соединений, например природных веществ. Внедрение гидрирования в технику явилось стимулом для грандиозного развития процессов деструктивного гидрирования, синтезов из окислов углерода, облагораживания топлива и многочисленных реакций восстановления. [c.338]


    Это открытие дало новое обоснование расположению элементов в периодической системе. Вместе с тем оно устраняло и кажущееся противоречие в системе Менделеева — положение некоторых элементов с большей атомной массой впереди элементов с меньшей атомной массой (теллур и йод, аргон и калий, кобальт и никель). Оказалось, что противоречия здесь нет, так как место элемента в системе определяется зарядом атомного ядра. Было экспериментально установлено, что заряд ядра атома теллура равен 52, а атома йода — 53 поэтому теллур, несмотря на большую атомную массу, должен стоять до йода. Точно так же заряды ядер аргона и калия, никеля и кобальта полностью отвечают последовательности расположения этих элементов в системе. [c.39]

    КАРБОНИЛЫ МЕТАЛЛОВ — химические соединения оксида углерода СО с металлами, например, карбонил никеля N1 (С0)4, открытый первым в 1890 г. В настоящее время получены карбонилы многих металлов и некоторых неметаллов. К- м. бывают одноядерными и многоядерными, в зависимости от количества атомов металла в молекуле, а также смешанные, например [Ре (СО)4) Hg. Большинство К. м. при обычных условиях кристаллические, кроме N1 (С0)4, Ре (СО) Ни (СО),, 05 (С0)5. к. м. хорошо растворяются в органических растворителях, летучи, сильно ядовиты. Наибольшее значение в технике имеют К- м.— никеля, кобальта, железа. К. м. применяют для получения чистых металлов, для покрытия поверхности металлами, как ката- [c.120]

    На образовании роданистого комплекса кобальта основан в аналитической химии метод открытия иона кобальта (II). [c.259]

    Исследования Мозли подтвердили правильность размещения в системе тех элементов, которые с точки зрения атомных весов, как основы, стояли не на своих местах. Если не считать Оз, 1г, Р1 и Аи, для которых данные по атомным весам были впоследствии исправлены, то уже при самом возникновении системы имелось два таких случая кобальт (58,9) был поставлен Д. И. Менделеевым перед никелем (58,7), а теллур (127,6)— перед иодом (126,9). Это отступление от общего принципа расположения по атомным весам диктовалось свойствами рассматриваемых элементов, так как, например, теллур был очень похож по свойствам на селен, но совершенно не похож на бром, а иод, наоборот, очень похож на бром, но не похож на селен. После открытия инертных газов прибавилось третье отступление аргон (39,9) расположился перед калием (39,1). С точки зрения новой основы — зарядов ядер — все эти неувязки отпали оказалось, что кобальту действительно соответствует место № 27, никелю — № 28 и т. д. [c.219]

    Д. И. Менделеев был настолько уверен в справедливости открытого им закона, что на основе его исправил атомные массы девяти элементов индия, урана, тория, церия и др., которые нарушали периодичность в изменении различных свойств. При составлении таблицы ему пришлось в ряде случаев поставить более тяжелый кобальт перед более легким никелем, а теллур — впереди иода. Он поместил церий в IV группу, а спутников его (лантан и диди-мий) — соответственно в группы третью и пятую. До Д. И. Менделеева атомную массу церия принимали равной 92. Он исправил ее на 138, а затем на 140. [c.270]

    Исследование рентгеновских спектров позволяет определить число квантовых уровней в атоме. Открытие закона Мозли подтвердило и обобщило выводы Резерфорда о том, что заряд ядра атома отвечает порядковому номеру элемента 1. Кроме того, известно, что Менделеев расположил некоторые элементы в периодической системе не в порядке возрастания атомного веса (чтобы не нарушать сходства элементов в группах). В частности, кобальт был поставлен раньше никеля, хотя он и имеет атомный вес больше никеля. [c.77]

    Закон Мозли подтвердил правильность менделеевского порядка расположения элементов в системе. Так, / для кобальта оказался 12,98-10 , для никеля 13,47-10 , откуда 2со = 27, = 28. Также было подтверждено положение теллура перед иодом, аргона перед калием и др. Анализ спектров лучей рентгена привел к открытию гафния (№ 72) и рения (№ 75). Он сыграл большую роль в установлении числа лантаноидов. Открытие закона Мозли углубило содержание периодического закона и еще больше раскрыло его смысл и значение. [c.77]

    Открытие катионов кадмия кобальта 11) Со" и никеля 1 ) [c.311]

    Периодический закон Д. И. Менделеева был общепризнан, хотя имелись и некоторые аномалии. Так, согласно периодическому закону, свойства элементов находятся в периодической зависимости от их атомных весов, и поэтому не может быть двух элементов с одинаковым атомным весом и разными химическими и физическими свойствами. Однако это наблюдается у кобальта и никеля порядок расположения по возрастающему атомному весу нарушен для теллура и иода. Д. И. Менделеев предполагал, что атомный вес теллура не верен, но это не подтвердилось, и теллур должен быть помещен в периодической системе до иода, хотя у него атомный вес больше. Кроме того, было неясно положение в периодической системе VIII группы и редкоземельных элементов, а также не нашлось места для инертных газов, открытых в самом конце XIX века. [c.91]

    Открытие ионов кобальта зтой реакцией возможно в присутствии ионов никеля, образующего с указанным реактивом соединение, окрашенное в буровато-желтый цвет. [c.269]


    Химический состав зеленого кобальта, открытого в 1780 г. и представляющего собой твердый раствор закиси кобальта в окиси цинка, может быть изображен общей формулой oO>A ZnO. Цвет этого пигмента колеблется от светло- до темно-зеленого и зависит от соотношения в нем количеств закиси кобальта и окиси цинка, причем чем больше в пигменте содержится СоО, тем цвет его темнее. Обычно выпускают лишь несколько сортов зеленого кобальта, например темный приблизительного состава oO-15ZnO и светлый состава o0-50zn0. Цветовые характеристики i = 509—510, р = 17—20, г = 30—33 (для светлого кобальта) "к — 508, р — 26— 27, г = 9,2—9,3 (для темного кобальта). [c.559]

    Химический состав зеленого кобальта, открытого в 1780 г. и представляющего собой твердый раствор закиси кобальта в окиси цинка, может быть изображен общей формулой СоО х2пО. Цвет этого пигмента колеблется от светло- до темнозеленого и зависит от соотношения в нем количеств закиси кобальта и окиси цинка, причем чем больше в пигменте содержится СоО, тем цвет его темнее. В СССР в настоящее время выпускают два сорта зеленого кобальта—темный приблизительного состава СоО 152пО и светлый — СоО 502п0. [c.432]

    С наблюдается переход к фиолетовой окраске, и при более высокой температуре растворы приобретают синий цвет. Тот же ход перемены окраски наблюдается и при нагревании твердых кристаллогидратов хлористого кобальта,, открытых А. Потылицыным в 1884 г. [ ] гексагидрат имеет розовый цвет, бигидрат — фиолетовый и моногидрат — синий. [c.18]

    Определение кобальта. Используют метод дифференциального потенциометрического титрования растнором красной кровяной соли КзРе(СЫ) . Отбирают 20—50 см исследуемо1о раствора, добавляют 100 см воды, 10 см 10 %-го NH4 I, 30 см 25 %-го аммиака и 10 см 30 %-й лимонной кислоты. В стакан с приготовленным раствором помещают два платиновых электрода, из которых один заключен в чрубку с открытым концом. Электроды подключают к милливольтметру, например типа рН-340. Титрование ведут прн перемешивании раствора магнитной мешалкой. Конец титрования определяют по скачку потенциала, Ко щентрацию (г/дм ) кобальта рассчитывают по формуле  [c.131]

    Античные ученые, как известно, описали десять элементов, средневековые алхимики — четыре (см. гл. 4). В XVIII столетии были открыты такие газообразные элементы, как азот, водород, кислород и хлор, и такие металлы, как кобальт, платина, никель, марганец, вольфрам, молибден, уран, титан и хром. [c.92]

    Исследования в области каталитического гидрирования окиси углерода в течение первой половины XX в. развивались все более и более быстрыми темпами. Первыми вехами на пути этих исследований двились работы Сабатье и Сандерана [24] по синтезу метана на никелевых катализаторах и открытие Баденской анилиновой и содовой фабрикой [4] реакции между водородом и окисью углерода. В результате этой реакции образовывался жидкий продукт, содержавший спирты, альдегиды, кстоны, жирные кислоты и некоторое количество насыш енных и ненасыщенных алифатических углеводородов. Она протекала при давлениях 100—200 ат и температурах 300—400° в присутствии окисей кобальта и осмия, активированных щелочью и нанесенных на асбест . Последующие исследования привели к разработке в 1923—1925 гг. промышленного синтеза метанола. Начиная с 1923 г. и до настоящего времени, проводятся обширные работы по изучению процесса Фишера-Тропша в лабораторном и полузаводском масштабах. [c.519]

    В установке гидроочистки сернистые компоненты исходного сырья превращаются в сероводород на кобальт-молибденовом катализаторе, причем конечная концентрация серы снижается до 5—10 ч/млн. Растворенный сероводород выделяется из дистиллята перегонкой в обогреваемой испарительной колонне. Поскольку в этом случае серусодержащие соединения исходного сырья, покидающего установку гидроочистки, будут в основном представлять собой соединения устойчивого типа, которые не реагируют с окисью цинка на первой полке в закрытом сэндвиче (окись цинка — ко-бальт-молибденовый катализатор — окись цинка), то открытый сэндвич (кобальт-молибденовый катализатор — окись цинка) предпочтительнее. [c.65]

    Есть основания мредполагат ), что по радикальному механизму протекают и открытые М. Кара тем реакции магнппор-ганических соединений в присутствии каталитических количеств хлорида кобальта, П1)имеры таких реакций приведены ниже. [c.301]

    Порошкообразный кобальт заливают в стеклянной или фарфоровой чашке этаноламином, наполовину раз бавленным водой. Через две-три недели в чашке обра зуется темно-красный раствор. Его отфильтровывают от нерастворившегося кобальта и к фильтрату добавля ют пропиловый спирт до выпадения осадка соли. Осадок отфильтровывают, промывают пропиловым спиртом, эфиром и высушивают при 50—60 °С. Соль можно перекристаллизовать из метилового спирта. Для этого се растворяют в метиловом спирте и раствор оставляют открытым для испарения спирта. [c.284]

    Реакция открытия Zn -ионов тетрароданмеркуриатом может идти и в отсутствие солей кобальта, но присутствие последних повышает чувствительность реакции. [c.66]

    Зато в XVI11 в. последовал уже целый ряд открытий химических элементов. В 1735 г. упсальским профессором Г. Брандтом открыт кобальт. В 1748 г. испанским ученым А. де Уллоа подробно описана платина, известная ранее. В 1751 г. шведским ученым А. Кронштедтом выделен из никелевого колчедана металлический никель. 1776 г. считается годом открытия водорода, выделение которого в 1666 г. наблюдал Р. Бойль, в 1745 г. М. В. Ломоносов, а в 1766 г. Г. Кавендиш, подробно описавший его как горючий воздух . В 1771—1774 гг. открыт кислород (К. Шееле в Швеции, Дж. Пристли в Англии, А. Лавуазье во Франции). В 1771 г. К. Шееле открыл фтор, в 1772 г. Д. Резерфорд описал азот. В 1774 г открыты хлор и марганец. [c.39]

    Применив представления Вант-Гоффа, А. Вернер в 1893 г. разработал координационную теорию, в основу которой легло представление о пространотвенном строении комплексных соединений. Тан рядом со стереохимией соединений углерода и соединений азота становится теперь стереохимия соединений кобальта и соединений платины , — писал Вернер в 1893 г. Оп показал, что оптической активностью могут обладать и неорганические соединения. Подлинным триумфом стереохимии явилось открытие А. Вернером оптической изомерии комплексных соединений. [c.237]

    Ионы железа (111) мешают реакции вследствие образования роданидов железа, окрашенных в кроваво-красны цвет, поэтому синее окрашивание, вызываемое (Со(5СЫ)4Г, становится незаметным. С целью маскирования Fe " " к исследуемому раствору добавляют фториды, фосфаты, оксалаты и др., образуюш,ие с ионамн железа (ill) в сильнокислой среде устойчивые комплексные соединения, не мешающие открытию ионов кобальта. [c.78]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    При и = 6 константа устойчивости комплекса железа(Ш) Р = 1,7 10 (lgP = 3,23), т. е. этот комплекс несколько устойчивее тиоцианатного комплекса кобальта(П). На фоне окрашенного комплекса железа(1П) окраску соединения кобальта(П) заметить практически невозможно, т. катионы Fe мешают открытию ионо)з Со . Мешающее действие катионов железа(1П) можно подавить введением в раствор фторид-ионов F. В присутствии этих анионов железо(П1) связывается в очень прочный бес цветный комплекс [РеРб]  [c.209]

    Открытие катионов кобальта (II) Со . Если в растворе присутствуют катионы железа(П1) Fe и меди( П) Си , то катион Со открывают капельной реакцией на полоске фил1лровальной бумаги с 1-нитрозо-2- [c.339]

    Красный раствор при этом обесцвечивается. Реакцию используют также для маскирования катионов железа(Ш) при открытии кагионов кобальта(П) в виде тиоцианатных к<)Мплексов кобальта(Ш) синего цвета в присутствии фторид-ионов железо(1П) связывается в прочные бесцветные комплексы [FeFe] и не мешает открытию катионов кобальта(П). [c.448]


Смотреть страницы где упоминается термин Кобальт открытие: [c.140]    [c.208]    [c.86]    [c.79]    [c.519]    [c.205]    [c.91]    [c.104]    [c.54]    [c.224]    [c.338]   
Аналитическая химия (1973) -- [ c.103 , c.137 ]

Курс аналитической химии. Кн.1 (1968) -- [ c.62 , c.267 , c.275 , c.277 , c.281 ]

Комплексоны в химическом анализе (1955) -- [ c.169 ]

Курс аналитической химии Книга 1 1964 (1964) -- [ c.53 , c.228 , c.235 , c.239 , c.242 ]

Капельный анализ (1951) -- [ c.0 ]

Курс аналитической химии Издание 3 (1969) -- [ c.62 , c.267 , c.275 , c.277 , c.281 ]

Химический анализ в ультрафиолетовых лучах (1965) -- [ c.55 , c.56 , c.67 ]

Микрокристаллоскопия (1955) -- [ c.130 , c.164 , c.168 , c.185 , c.198 , c.201 , c.202 , c.208 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Аммония тетрароданомеркуриат, открытие кобальта

Ильинского реактив открытие кобальта

Калия нитрит, открытие кобальта

Калия тетрароданомеркуриат, открытие кобальта

Кобальт и другие ионы, открытие

Кобальт открытие посредством комплексона

Кобальт, определение в вольфраме металлическом открытие в присутствии никкеля

Кобальта открытие ионов

Микрокристаллоскопическое открытие кобальта

Никкель, определение бензилдиоксимом открытие в присутствии кобальта

Окисление аммиака перекисью водорода (открытие меди и кобальта)

Открытие кобальта в минералах, не содержащих большого количества меди

Открытие кобальта в присутствии молибдена, вольфрама и ванадия

Открытие кобальта в смеси минералов

Открытие меди в минералах, содержащих кобальт

Реакции и открытие ионов кобальта (II) (Со)



© 2024 chem21.info Реклама на сайте