Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Продольный градиент

    Рассмотрим плоскопараллельное стационарное течение несжимаемой жидкости, ограниченной динамически гладкой непроницаемой поверхностью, при отсутствии продольного градиента давления. Ось х направим по течению, а ось у — перпендикулярно граничной плоскости. Тогда уравнения, описывающие поведение флуктуаций скорости в турбулентном потоке, получаемые вычитанием уравнении Рейнольдса из полных уравнений Навье—Стокса, примут вид  [c.171]


    В общем случае поперечная диффузия уменьшает колебания концентрации по поперечному сечению и, следовательно, приближает параметры реактора вытеснения к параметрам, которые имели бы место в реакторе идеального вытеснения. Влияние продольной диффузии противоположно, поскольку концентрация реагента уменьшается от входа в реактор к его выходу. Направление продольного градиента концентрации таково, что, благодаря диффузии, реагент перемещается к выходу из реактора несколько быстрее, чем это имело бы место, если бы он перемещался с основным потоком. [c.59]

    Вследствие распространения газа в периферийном кольцевом сечении по мере его восходящего движения продольный градиент давления в фонтанирующем слое возрастает от нуля в его основании до максимума у свободной поверхности слоя. Было найдено что изменение давления с высотой слоя обычно следует косинусоиде [c.626]

    Гомогенные реакции протекают в одной фазе — жидкой или газовой (соответственно реакторы жидкофазные и газофазные), и не сопровождаются фазовыми переходами. При их расчете основное внимание уделяется учету неравномерности распределения тепла и массы (поперечных и продольных градиентов), конвективного переноса (диффузии) и теплопроводности на селективность и производительность реактора [11]. [c.82]

    Развитие вихревого движения приводит к интенсивному поперечному переносу, к развитию турбулентности и, следовательно, интенсивному перемешиванию в потоке. В то же время для осуществления процессов массопередачи необходимо наличие градиента концентраций вдоль потока от входа до выхода нз аппарата, которые должны непрерывно изменяться. Интенсивное перемешивание в турбулентном потоке вызовет и продольное перемешивание, что снизит продольный градиент концентраций и ухудшит разделение. Чем больше будет коэффициент вихревой диффузии тем больше будет влиять эффект перемешивания. В этом смысле коэффициент служит характеристикой интенсивности перемешивания в диффузионных процессах. [c.197]

    Продольный градиент числа Маха описывается следующим уравнением  [c.129]

    Диффузионный критерий Пекле Ре характеризует отношение поперечного градиента концентрации (по толщине пограничного слоя) к продольному градиенту (по длине или высоте аппарата). [c.579]

    Fl — увлекающая пробку сила трения, действующая на пробку со стороны поверхности цилиндра (Fe — F ) — сила, которая появляется в результате существования продольного градиента давления F . F4. — тормозящие силы трения, действующие иа пробку со стороны [c.435]


    Из (73а) следует, что безразмерный профиль скорости при слоистом движении жидкости в плоском канале не зависит ни от величины вязкости, ни от величины продольного градиента давления и представляет собой квадратичную параболу. [c.88]

    Такой же смысл имеют полученные выше соотношения между статическими давлениями газа при течении с трением (50), рри течении с подводом механической энергии и т. п. Во многих случаях, однако, заранее известно, что в рассматриваемом потоке нет продольного градиента давления. Изменение скорости газа в этом случае йр = 0) полностью определяется уравнением количества движения в виде [c.217]

    Как следует из соотношения (20), давление поперек пограничного слоя остается постоянным. Поэтому продольные градиенты давления в пограничном слое и во внешнем потоке совпадают. Дифференцируя по х интеграл Бернулли ( 4 гл. I), который связывает значения давления и скорости при течении идеального газа, получим [c.289]

    Заметим, что продольный градиент давленпй сказывается на величине напряжения трения на стенке, но слабо влияет на теплообмен, в чем можно убедиться, производя расчет пограничного [c.130]

    Следует отметить, что условие скольжения (9) не является вполне точным в том случае, когда при малом абсолютном давлении газа имеется существенное изменение температуры по длине стенки, так как продольный градиент температуры вызывает термодиффузионный направленный поток молекул в сторону возрастающей температуры (см., например, 8). Такое индуцируемое разностью температур течение получило название температурный крип . [c.136]

    Знак продольного градиента давления остается прежним (отрицательным), иначе говоря, как выход потока из магнитного поля, так и вход в него сопровождаются падением давления (сопротивлением). Направления поперечных градиентов давления при выходе и входе потока жидкости в магнитное ноле противоположны. [c.223]

    Действительно, меняя растворитель или подвергая гибкоцепной полимер большим растягивающим воздействиям продольных градиентов скорости (создаваемых любым способом), можно заставить гибкоцепные полимеры вести себя аналогично жесткоцепным. [c.219]

    Возникновение ориентированного состояния связано с появлением продольной вязкости и некоторых необычных релаксационных эффектов. С чисто кинетических позиций описанные приемы генерирования или сборки высокоориентированных систем связаны с реализацией продольного течения, характеризуемого продольным градиентом скорости и, соответственно, продольным коэффициентом вязкости. [c.220]

    Поскольку полистирол и полибутадиен относятся к категории термодинамически несовместимых, полимеров, термодинамическая поправка связана здесь с сегрегационным параметром хав (А и В обозначают блоки, которые в свободном состоянии разделились бы на макрофазы), величина которого столь высока, что можно принять эффективную энергию излома бесконечной, т. е. считать для полистирольных блоков /" = 0. Это приводит к полному их распрямлению вот здесь-то обходным путем удается реализовать структуру, которая возникла бы при низкотемпературном переходе второго рода, если бы его осуществлению не мешало структурное стеклование иными словами, этот переход действительно реализуется в результате сегрегации (количественно характеризуемой параметром хав) и воздействия относительно малого продольного градиента скорости у входа в канал экструдера. Впрочем, можно показать, что тот же эффект в других условиях достигается за счет одной лишь сегрегации (28]. [c.223]

    Практическая проверка методики была осуществлена на магистральном газопроводе Средняя Азия-Центр. Потенциально опасные места определялись на основании анализа данных измерения поперечного градиента потенциала, измеренного как до отключения катодной поляризации, так и в различные моменты времени после ее отключения. Следует отметить, что для протяженных конструкций, таких как магистральные газопроводы, в ряде случаев удобным инструментом электрометрических обследований является измерение не самого потенциала, а его продольного градиента. При этом проводят измерение разности потенциалов между двумя точками на поверхности земли, одна из которых находится над сооружением, другая - на расстоянии 2- 10 м от него. [c.98]

    Мб. Моту л е ВИЧ В, П., Расчет теплообмена и скорости разрушения тел в потоке газа без (Продольных градиентов давления при наличии ла их паверхности источников инородного вещества, Инж.-физич. журнал, т. 1, № 10, 1958. [c.663]

    Динамическое поверхностное натяжение можно определить методом горизонтальной колеблющейся струи жидкости [45, 46]. Путем обработки опытных данных установлено, что ускорение Р скорости массопередачи за счет поверхностной конвекции можно оценивать в зависимости от продольного градиента динамического поверхностного натяжения с помощью уравнения  [c.68]

    Строго говоря, в каждой из зон существуют еще продольные кондуктивные тепловые потоки. Дело в том, что при изменении температур движущихся теплоносителей (пусть в режиме ИВ) существуют отличные от нуля продольные градиенты температур ЛТ/йх и где х — продольная координата. Однако [c.548]


    Выше мы отмечали, что различные конформации реализуются в разных состояниях полимеров в кристаллическом — вытянутые и складчатые, в жидкокристаллическом — вытянутые, в аморфном (жидком и твердом)—статистического клубка, в растворах — клубка и глобулы, а при наличии продольного градиента и вытянутая. Уже из этого перечисления следует, что состояние, в котором находится полимер, вовсе не обязательно совпадает с тем состоянием, аналогом которого является конформация, принимаемая отдельными макромолекулами. Эта особенность полимеров, названная одним из авторов вместе с Барановым фазовым дуализмом, как мы увидим в дальнейшем, имеет далеко идущие следствия. Понять же, почему в том или ином состоянии макромолекулы существуют именно в таких, а не иных состояниях, и при каких условиях происходит изменение состояния полимера, сопровождающееся (или не сопровождающееся) изменением конформаций макро- [c.22]

Рис. УП1-19. Радиальные и продольные градиенты температуры и концентрации в слое катализатора Фишера—Тропша при 200 °С в реакторе вытеснения [по шкале О—15 отложены (в °С) приращения температуры в слое по сравнению с начальной температурой по шкале О—4 отложены (в м) расстояния по оси слоя по шкале О—10 отложены (в мм) расстояния по радиусу слоя]1 2. Рис. УП1-19. Радиальные и <a href="/info/642060">продольные градиенты температуры</a> и концентрации в слое <a href="/info/311176">катализатора Фишера—Тропша</a> при 200 °С в <a href="/info/3451">реакторе вытеснения</a> [по шкале О—15 отложены (в °С) приращения температуры в слое по сравнению с <a href="/info/25846">начальной температурой</a> по шкале О—4 отложены (в м) расстояния по оси слоя по шкале О—10 отложены (в мм) расстояния по радиусу слоя]1 2.
    Режим IV, когда коэффициенты вихревой вязкости и вихревой диффузии достигают максимального значения, соответствует автомодельному режиму, или режиму развитой турбулентности. В этом режиме перепад давления в потоке определяется квадратичным законом и сопротивлеьп-1е пе зависит от молекулярной вязкости. Однако в процессе массопередачи возрастание коэффициента вихревой вязкости приводит к интенсивному продольному перемешиванию и снижает продольный градиент концентраций, поэтому коэффициент массопередачи и число Л д не могут возрастать до бесконечности (пунктирная линия). [c.203]

    Жидкость, заторможенная в пограничном слое, в некоторых случаях не прилегает ио всей обтекаемой поверхности тела в виде тонкого слоя. Таким особым случаем является движение вязкой жидкости вдоль стенки против нарастающего давления во внешнем потоке (течение в диффузоре). Как показывают результаты многочисленных опытов и теоретические оценки ( 2), давление остается постоянным иоиерек пограничного слоя, следовательно, продольный градиент давления, который имеется во внешнем потоке, оказывает влияние на весь пограничный слой. Если положительный градиент давления достаточно велик, то слои жпдкостп, прилегающие непосредственно [c.282]

    Наличие даже слабого скачка уплотнения приводит к резкому увеличению давления во внешнем потоке. Рост давления передается навстречу потоку по дозвуковой части пограничного слоя. Линии тока отклоняются от стенки, порождая в сверхзвуковой части пограничного слоя семейство волн сжатия, которые распространяются во внешний поток и оказывают влияние на форму и интенсишность окачка уплотнения вблизи области взаимодействия. Продольный градиент давления в пограничном слое оказывается значительно меньше, чем во внешнем потоке. Если скачок слабый, то движение в пограничном слое происходит под воздействием небольшого положительного градиента давления и отрыв потока не происходит. С увеличением интенсивности скачка уплотнения во внешнем потоке возрастает градиент давления вблизи стенки и возникает отрыв пограничного слоя. При этом увеличивается отклонение линий тока в сверхзвуковой части течения, благодаря чему поддерживается необходимое распределение давления, соответствующее данной интенсивности скачка уплотнения. В зависимости от условий во внешнем потоке (интенсивности скачка уплотнения, местного числа М, ускоренного или замедленного характера течения) и формы обтекаемого тела возможны два случая. В первом случае поток после отрыва присоединяется снова к стенке. Сразу за скачком уплотнения возникают волны разрежения, как при обтекании внешпего тупого угла. В месте присоединения поток направлен под некоторым углом к стенке, поэтому здесь возникает новый скачок уплотнения, который может вызвать иногда новый отрыв пограничного слоя. Таким образом, могут появиться несколько 22  [c.339]

    Теоретическое и экспериментальное исследования гиперзвукового пограничного слоя, вызывающего на пластпне и на тонком теле (клин, конус) появление ударного слоя с продольным градиентом давлений, проводились в работах Беккера, Лиза и Проб-стина, Бертрама, Кендалла и др. (см. монографию Хейза и Пробстина). [c.128]

    Вторым членом соотношения (12), учитывающим температурный крип, чаще всего можно пренебречь, так как при высоких продольных градиентах температуры и очень больпшх разрежениях, когда этот член особенно существен, обычно реализуется свободно-молекулярное течение газа без гидродинамического пограничного слоя. Однако в некоторых специальных случаях (например, обтекание головной части ракеты во время входа ее в сравнительно плотные слои атмосферы) условие (12) используется в полном виде. [c.137]

    Используя тот факт, что в области дальнего следа продольные градиенты всех искомых функций малы по сравнению с поперечными, систему уравнений Навье — Стокса можно упростить, отбросив члены со вторыми производными в продольном направлении и смешанные производные. Таким образом, упрош енные стационарные уравнения Навье — Стокса в цилиндрической системе координат х,г х — продольная, г — поперечная координаты, / = О — плоское течение, / = 1 — осесимметричное течение) будут иметь следуюпщй вид  [c.154]

    Если I незначительно отличается от /о, то // о близко к единнце. Тогда, ограничиваясь первым членом ряда разложения для логарифмической функции, получаем, что г= . Скорость деформации растяжения йг/сИ — в (ее размерность се г ) называется также продольным градиентом скорости, поскольку оиа определяется перепадом лииейной скорости перемещения соседних слоев в о азце. [c.266]

    Растяжение жидкостей было впервые изучено Трутоном в начале нашего столетия для очень вязких веществ (смол), которые не проявляют высокой Эластичности. По аналогии с уравнением Ньютона [уравнение (1)] он записал связь между скоростьго растяжения (продольным градиентом скорости) и нормальным напряжением в форме уравнения  [c.266]

    Этот результат расходится с результатом, полученным при выводе уравнения ламинарного пламени из уравнения пограничного слоя. Расхождение является, конечно, следствием использования приближения пограничного слоя. Предположение о малости продольных градиентов по сравнению с поперечными градиентами, которое дает возможность пренебречь членами с d tdx , оказывается неверным для,пламени, когда величина m становится сравнимой с величиной PiU . Приближение пограничного слоя применимо в области распространения пламени, только если 9 1, так что sin 0 tg 0. Может также вызвать сомнение применимость приближения пограничного слоя в задней части (10%) зоны развития пламени, в которой, как показывают результаты Марбла и Адамсона, профили могут сильно изменяться с изменением х. [c.421]

    Положим в этой полной системе уравнений (2.2.1) — (2.2.4) нормальную к поверхности составляющую скорости и х,у) равной нулю. Тогда из уравнения (2.2.1) следует, что и(х,у) = = и у). При этом условии уравнения (2.2.1) и (2.2.3) исключаются, а уравнения (2.2.2) и (2.2.4) упрощаются. Оставшийся в уравнении (2.2.2) конвективный член иди1дх (перенос количества движения) можно опустить, так как и=и(у). Некоторым оправданием этого является условие малости скоростей потока, которое выполняется довольно часто. Кроме того, как и в последующем анализе пограничного слоя, пренебрегают эффектами вязкости и теплопроводности, обусловленными продольными градиентами параметров в направлении течения. Наконец, зависимость плотности от температуры р( ) принимается линейной [c.39]

    Одной из причин возникновения конвективных токов являются продольные градиенты поверхностного натяжения, а также градиенты плотности, появляющиеся при протекании хемосорбции. Явление поверхностной конвекции было обнаружено (20, 22, 37—39] при поглощении СОа водными растворами МЭА, ДЭА и др. Поверхностная конвекция наблюдается в пленочных и насадочных аппаратах [20], в ламинарных струях жидкости [42] в барботажных аппаратах ее влияние на массопередачу сравнительно невелико. Из сказанного выше следует, что коэффициент физической массоотдачи Рж должен быть определен при протекании хемосорбционного процесса, т. е. в идентичных гидродинамических условиях. Если объектом исследования является поглощение СО2 хемосорбентом, то величину р удобно определять по методу [36, 37], заключающемуся в десорбции N30 из раствора хемосорбеита. Поскольку коэффициенты диффузии N20 и СОз близки, то близки между собой и [c.68]

    При увеличении диаметра (б, в) градиент dp/dx понижается. При этом плавный переход от одного постоянного диаметра к другому (б) сопровождается плавным переходом от одного линейного участка падения давления к другому линейному участку (с меньшим dp/dx, если диаметр увеличивается). Для постепенного расширения трубопроюда (в) характерно криволинейное изменение давления по длине с понижением продольного градиента dp/dx. [c.166]

    Третьей конформацией, которую может принять макромолекула, является максимально вытянутая конформация, отвечающая минимуму потенциальной конформационной энергии. В зависимости от конкретного химического строения полимера эта конформация может представлять собой плоский трансзигзаг (у карбоцепных полимеров с простыми С—С-связями и без массивных боковых групп), спираль (у макромолекул с массивными боковыми группами) и некоторые другие. Для реализации такой конформации необходимо наличие силы, непозволяющей макромолекуле проявить свою гибкость и свернуться в клубок. (Это может быть внешнее или внутреннее растягивающее напряжение, поток с продольным градиентом скорости или межмолекулярное взаимодействие полимерных цепей в кристалле или жидком кристалле). [c.20]

    Как мы увидим в гл. XVI, в собственно ориентационную кристаллизацию вовлекается относительно небольшое число цепей— от 10 до 20%, и они образуют сплошной пространственный каркас КВЦ. Напряжение [или дополнительная энергия,, расходуемая на создание продольного градиента скорости у. который непосредственно повинен (см. гл. IV) в переходе струя — волокно] локально сбрасывается вблизи образующегося каркаса, падает и градиент у и поэтому рядом с каркасом могут образоваться как бы нанизанные на него КСЦ, и возникнет так называемая структура типа шиш — кебаб ( шашлыкоподобная — как переводит этот термин Андрианова [61]) с довольно совершенными КВЦ, но сильно дефектными КСЦ, что и видно на топограмме. Впрочем, топограмма понимает и другие вещи. Как мы недавно убедились, коротким цепям (с высокими р) труднее образовать КСЦ, чем длинным. Поэтому, если большие-Р связаны с малыми М, то Тпл КСЦ тоже должна убывать, такл 108 [c.108]


Смотреть страницы где упоминается термин Продольный градиент: [c.464]    [c.286]    [c.56]    [c.128]    [c.153]    [c.237]    [c.163]    [c.210]    [c.211]    [c.215]    [c.217]    [c.664]   
Сверхвысокомодульные полимеры (1983) -- [ c.159 ]




ПОИСК







© 2025 chem21.info Реклама на сайте