Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Едкий натр электрохимическое

    Конструкционные, углеродистые н низколегированные стали 1) 10—15-процентный раствор едкого натра Электрохимическая, 25 °С, выдержка 15— 25 мин, Оц = 1,5 -ь 2,5 А/дм  [c.113]

    Весьма перспективными являются также электрохимические методы очистки металлов. Они могут быть осуществлены в двух вариантах в травильных растворах или в расплавленном едком натрии. Электрохимические способы травления позволяют значительно сократить время обработки и уменьшить расход кислоты. В процессах электрохимического травления используют как катодную, так и анодную поляризацию (табл. 2-10). [c.94]


    Сырьем для производства хлора и едкого натра электрохимическим способом служат растворы поваренной соли, которые приготовляют из каменной или самосадочной соли, т. е. из природного хлорида натрия. [c.24]

    Основной промышленный способ получения едкого натра — электрохимический электролиз водного раствора поваренной соли. Одновременно образуются хлор и водород. [c.14]

    Из химических методов удаления окалины представляет интерес обработка изделий при помощи гидрида натрия. Кроме того, весьма перспективны электрохимические методы очистки металлов. Последние могут быть осуществлены в двух вариантах в травильных растворах или в расплавленном едком натре. Электрохимический способ травления позволяет значительно сократить время обработки и уменьшить расход кислоты. В процессах электрохимического травления используют как катодную, так и анодную поляризацию. Состав электролитов и режимы работы электрохимического травления в растворах приведены в табл. 19. [c.64]

    В России в конце XIX в. были построены содовые заводы, ряд камерных и контактных сернокислотных заводов, было начато производство хлора и едкого натра электрохимическим путем, организовано производство суперфосфата, хлорной извести и многих солей. Органические производства развивались в это время слабо, причем ряд заводов занимался переработкой импортных полупродуктов. [c.47]

    Конструкционные, углеродистые и низколегированные стали 1. 10—15 %-ный раствор едкого натра Электрохимическая, =25 °С, выдержка 15— 25 мин, >к=1,5- 2,5 А/дм2 [c.335]

    А/дм со свинцовым анодом и при комнатной температуре. Для тех же и высоколегированных сталей рекомендуется удалять окалину электрохимическим методом в расплавленной смеси кальцинированной соды (40—60%) и едкого натра (60—40%) в течение 1—5 мин при 450—500° С и катодной плотности тока 25—50 А/дм2. [c.441]

    Рис 21.7. Общая схема электрохимического производства едкого натра, хлора и водорода [c.348]

    Поскольку мощность электростанций России в 1913 г. составляла 1098 тыс, кВт, электрохимическая промышленность развивалась очень слабо. Было построено несколько небольших хлорных заводов, на которых, кроме хлора, получали едкий натр пять небольших заводов электролитического рафинирования меди и два завода электролитического получения меди из руд общей производительностью до 40 тыс. т, а также установка для рафинирования серебра и золота. Электролитические процессы в гальванотехнике осуществлялись лишь в отдельных мастерских полукустарного типа. [c.10]


    Электрохимический метод позволяет получать наряду с основным продуктом производства ценные побочные продукты, применять более дешевое сырье и полнее его использовать. Так, при электролизе растворов хлористого натрия выделяются одновременно хлор, едкий натр и водород. При электрорафинировании металлов отходом является шлам, содержащий благородные металлы зо гото и серебро (при рафинировании меди), платину и палладий (при рафинировании никеля). Стоимость получаемых благородных металлов полностью окупает расходы по рафинированию. [c.11]

    Третий способ. Для выделения 2,56 г меди по законам Фарадея израсходовали 2,144 а ч электрического тока. Это же количество электричества прошло и через раствор хлорида натрия. Электрохимический эквивалент едкого натра равен 40 [c.167]

    Большое значение имеет электрохимия в производстве многих химических продуктов. Так, получение хлора и едкого натра осуществляется в современной промышленности исключительно электрохимическим способом. Таким же путем готовятся многие окис- [c.4]

    При химической обработке металла на его поверхности возникают пленки, представляющие собой продукты взаимодействия металла со средой (оксиды, фосфаты, нитриды и т. д.) и сообщающие металлу устойчивость против коррозии. Наиболее часто. прибегают к оксидированию поверхности, которое может осуществляться как электрохимическим (анодирование алюминия, см. 5), так и химическим способом. Примером химического оксидирования служит воронение стальных изделий. Оно достигается кипячением в течение 20—60 мин обезжиренных и очищенных изделий в растворе едкого натра, азотнокислого и азотистокислого натрия, в результате чего изделия приобретают красивый черный цвет с синеватым оттенком (цвет вороньего крыла). Такие металлы, как тантал, ниобий, бериллий, надежно защищаются оксидными пленками от разрушения. [c.229]

    Электрохимическое обезжиривание заключается в обработке деталей в растворах при пропускании электрического тока детали подвешивают к положительному или отрицательному электроду. Электролит для электрохимического обезжиривания содержит 50—70 г/л тринатрийфосфата, 30—50 г/л едкого натра, [c.241]

    Раствор 3, содержащий едкий натр 100—120 г/л, применяют для электрохимического снятия оловянных покрытий с медн и латуни при 18- 25 °С, /, = 2 А/дм . [c.88]

    Весьма перспективны электрохимические методы очистки. Они позволяют сократить время обработки и уменьшить расход кислоты. Эти методы можно осуществить в двух вариантах в травильных растворах или расплавленном едком натре. В процессе электрохимического травления используют как катодную, так и анодную поляризацию (табл. 44). [c.108]

    Обратимый потенциал выделения водорода в растворе, содержащем хлорид натрия и едки) натр при соотнощении, реально существующем в условиях электрохимического производства, составляет примерно —0,845 В (отн. и.в.а.). Перенапряжение водорода на стальном ка годе при электролизе растворов хлорида с твердым катодом доставляет 0,3 В. Перспективным, вероятно, является снижение потенциала в результате деполяризации катода кислородо.м. При подаче к поверхности катода кислорода или воздуха протекает реакция 0 + 2И 0 + 4е -). 40Н- [c.144]

    Для оценки коррозионной опасности или применимости способов электрохимической защиты могут быть использованы кривые стойкость (срок службы) — потенциал. На рис. 2,17 показаны два соответствующих примера в растворе нитрата а [48], б [49]) и в едком натре (рисунок б [49]). В обоих случаях цилиндрические образцы подвергали нагрузке, постоянной во времени. Обычно имеется некоторое критическое напряжение растяжения, ниже которого коррозионное растрескивание под напряжением не наблюдается. Это соответствует и утверждению, что предельные потенциалы для коррозионного растрескивания под напряжением зависят от приложенного растягивающего на- [c.71]

    Коррозионно-стойкие стали 1) 600 Г едкого натра + 400 г углекислого натрия Электрохимическая, 400 °С, Вк ---- 15 А/дм2. Образец подключают к катоду, анодом служит коррозионно-стойкая сталь, площадь которой в пять раз больше площади образца [c.113]

    Наиболее эффективным способом травления в случае образования больших, плотных и клейких окалин является использование расплавленных солей (едкого натра или гидрида натрия ЫаН). Химическое воздействие на окалину расплавленной соли сочетается с нарушением сплошности окалины за счет различия коэффициентов линейного расширения окалины и основного металла под действием тепла при погружении изделия в ванну с расплавленным раствором. Этот метод травления находит все более широкое применение и дает наибольший эффект при сведении процессов удаления окалины и термообработки в одну операцию. Однако при этом требуются специальное оборудование и квалифицированные рабочие. Процесс является дорогостоящим и опасным. Кроме того, его нельзя применять в том случае, если воздействие высоких температур неблагоприятно скажется на механических свойствах металла, с которого удаляется окалина. Что касается химической очистки, то электрохимическое воздействие (анодная либо катодная поляризация) или использование ультразвука может улучшить действие травления. [c.60]


    Интервал температуры сжигания мусора составляет 800-1000 С, при этом негорючий мусор 30% (мае.)] состоит не только из железа, стекла, кирпича, фарфора, но и включает кадмий, ртуть, серу, хлор и т.д. Хлор,-содержащийся в поваренной соли, овощах, бумаге и ПВХ, в процессе сжигания превращается в значительной степени в соляную кислоту. Поэтому независимо от присутствия ПВХ в бытовом мусоре городов необходимо принимать меры защиты окружающей среды в процессе сжигания мусора. Получаемую при сжигании мусора соляную кислоту можно использовать для восстановления тяжелых металлов (в особенности ртути и кадмия), высвобождающихся в ходе того же процесса [132]. Так, соляную кислоту нейтрализуют едким натром и в итоге получают соль. После очистки эта соль может быть утилизирована в электрохимическом процессе, в ходе которого производят хлор. Используя этот хлор в производстве ПВХ, производственники замыкают цепь, обеспечивающую полную утилизацию фракции негорючих материалов, входящей в состав ПВХ [148]. [c.274]

    Электрохимические свойства стандартной мембраны марки флемион 230 приведены на графиках рис. 4.31. Особенностью мембраны марки флемион 723 является низкое напряжение при электролизе. В этом случае с уменьшением расстояния между электродами и мембраной напряжение уменьшается. Мембрана марки флемион 430 для производства 20%-його раствора едкого натра, используемого при получении целлюлозы, имеет асимметричную структуру с пониженной обменной емкостью поверхности мембраны со стороны контакта ее с водным раствором едкого натра. Электрохимические свойства мембраны марки флемион 430 приведены на рис. 4.32. [c.347]

    Нами испытано в автоклавных условиях влияние добавок магниевого порошка при гидрогенолизе углеводов с никель-кизельгу-ровым катализатором. Добавка 10—15% магния (к массе катализатора) позволяет в 1,5—2 раза продлить срок службы катализатора и тем самым сократить его расход. При добавлении магния можно проводить гидрогенолиз без применения гидроокиси кальция, производя подщелачивание раствора едким натром и используя в качестве-гомогенных сокатализаторов хлориды алюминия или железа. Поэтому добавление гранул магния и к стационарному катализатору гидрогеиолиза может быть весьма перспективным оно может продлить срок его службы (за счет электрохимической защиты) и предупредить блокировку его пове соединениями кальция [при исключении добавок Са(0Н)2  [c.125]

    НАТРИЯ ГИДРОКСИД (едкий натр, каустическая сода) NaOH — бесцветные кристаллы, т. пл. 320° С, хорошо растворяется в воде, образует гидраты, поглощает Oj из воздуха, превращаясь в карбонат натрия. Практически нерастворим в жидком аммиаке и большинстве органических растворителей. Н. г. разрушает кожу, бумагу и другие материалы органического происхождения. Попадание даже незначительного количества Н, г. в глаза опасно. Поэтому все работы с Н. г. необходимо выполнять в защитных очках и резиновых перчатках. Получают Н. г. электрохимическим разложением водного раствора хлорида натрия или при взаимодействии карбоната натрия с известью в водном растворе. Технический продукт — белая, твердая непрозрачная масса с лучистым изломом, достаточно гигроскопична. Растворинсь в воде, выделяет бол1)Шое количество тепла. Н. г.— один из важнейших продуктов химической промышленности, широко применяемый почти во всех отраслях народного хозяйства. Н. г. хорошо растворяет жиры, образуя мыло. Большое количество Н. г. используется для производства мыла. [c.169]

    Существует большое число различных способов получения гидроокисей щелочных металлов. На практике используются главным образом электрохимические методы. Наиболее крупномасштабным является производство едкого натра электролизом концентрированного водного раствора поваренной соли (300 г НаС1/л, 60—90°С, напряжение 3,6 сила тока 1000 А). Катод изготовляют из стали, анод —из графита. За разрядку на электродах конкурируют две пары катионов и анионов  [c.17]

    В периодической системе они образуют главную подгруппу I группы химических элементов. В атомах щелочных металлов содержится по одному внешнему, или валентному, электрону. Отдавая валентный электрон, их атомы обращаются в однократно положительно заряженные ионы. Во всех своих соединениях щелочные металлы одновалентны и образуют только ионные связи. Из металлов щелочные металлы — самые активные ими начинается электрохимический ряд напряжений. Гидроокиси щелочных металлов, в том числе известные вам NaOH — едкий натр, или каустическая (в переводе жгучая ) сода, и едкое кали КОН, опасны в обращении. Они разъедают кожу и ткани, поэтому называются едкими щелочами. Подобно гидроокисям, растворимы в воде н все соли ще.1ючных металлов, с которыми приходится нам встречаться все эти соли относятся к сильным электролитам. [c.128]

    Лужение производится в стальных ваннах, похожих по конструкции на ванны электрохимического обезжиривания. В ваннах находится щелочной электролит, содержащий 85—ПО г/л четыреххлористого олова ЗпСи-ЗНгО, 8—12 г/л едкого натра и 10—15 г/л уксуснокислого натрия СНзСООМа (ГОСТ 199—68). Один раз в смену в ванну Л0ба1вляется 1-2 г/л перекиси водорода Н2О2. Едкий натр и уксуснокислый натрий поддерживают определенную щелочность раствора, перекись водорода добавляется для предотвращения образования рыхлых оловянных покрытий. Температура [c.248]

    Электрохимически цинк со стали, медн и ее сплавов удаляют в растворе едкого натра (100—120 г/л) при 20 —40 С, анодной плотности тока 2—4 А/ды испо И.зу я стальные катоди. [c.70]

    Электрохимически хромовое покрытие удаляют с изделий из стали чугуна, латуни, меди, магнии анодной обработкой в щелочном растворе, содержащем едкий натр 100—150 г/л. при 20—30 "С, 1/=4—6 В /а=Зч-10 АУдм , используя стальные катоды Для этой же цели пригоден любой раствор анодно1 о обезжиривания [27]. [c.120]

    Электрохимическое окрашивание медн и ее сплавов в черный цвет проводят Б растворе едкого натра 100—200 г/л при 80—85 С (дл меди), 60—70 (для латуни) ia=0,5- l,5 А/дм i/=2 6 В т= = 10-i-20 MSffl с катодами ич коррознонностойкой стали, при соотношении анодной и катодной поверхности от 1 8 до 1. 5. [c.211]

    Электрохимическое окрашивание меди пот цвет золота ведут в электролите следующего состава, г/л сульфат меди (марки х/ч) 45, едкий натр 30, сахар кусковой пищевой 60 при i=18—25°С, /г=0,01- -—002 А/дм , С =0,7-н0,9 В, аноды—медные пластины, 5г-5к=1 1 При этом способе можно, в с/гличне от метода химического окра-шивагшя, точно регулировать цвет пленки и достигать однотонности краски, что особенно важно лрн окрашивании изделий, собираемых из [ескольчих деталей (например, бытовых светильников, часов). [c.212]

    Для электрохимического оксидирования используют, электролит 1 — еткий натр 700 г/л при 60—70 С, /а=5н-Ю А/дм , т=30 40 мин, электролит 2 — едкий натр 500 г/л при 50—70 С, / =2 5 А/дм , т= = 30—60 МИК, электролит 3 — хромовый аигидрид 150—250 г/л и борфтористоводородную кислоту 1—2 г/л при 40—50 С, /а=Б—10 A/дw т= 10-5-15 мин. Катоды из коррозионностойкой сгали типа 12Х18Н10Т [19]. [c.218]

    При обезжнриванни электрохимическим способом поверхность изделий очищается быстрее, чем при обезжиривании химическими способами. Электрохимическое обезжиривание (анодное или катодное) производят в щелочном растворе. Как правило, применяют комбинированную обработку сначала на катоде, затем на аноде. В качестве электролитов применяют едкий натр, углекислый и фосфорнокислый натрий, в растворы добавляют в качестве эмульгаторов мыло или жидкое стекло. В качестве второго электрода рекомендуется использовать покрытые никелем стальные пластины. Электрохимическое обезжиривание производят в ваннах при напряженигг от 3 до 12 В в зависимости от состава и концентрации электролита, плотиостн тока, температуры. Как и при химической обработке, температура процесса электрохимического обезжиривания составляет 60- 80 С. [c.124]

    На кинетику, скорость и механизм электрохимической коррозии влияют свойства металла, нефтепродуктов, а также температура, время, давление, скорость движения среды, присутствие замедлителей коррозии. В атмосфере воздуха, воды и нефтепродуктов, содержащих коррозионно-активные компоненты, большинство металлов неустойчиво, в том числе железо,и медь, являющиеся основными компонентами конструкционных материалов технических средств складов и нефтебаз. Коррозионная стойкость металла не определяется его положением в периодической системе. Большинство наименее устойчивых металлов расположены в I группе периодической системы Ыа, К, НЬ, Сз, а наиболее устойчивые находятся в УИ1 группе Кб, Оз, 1г, Р1, однако и в I группе имеются стойкие ко многим агрессивным веществам металлы (Аи, Ag, Си), а в УИ1 есть металлы, легко поддающиеся коррозии (Ре). Коррозионная стойкость металлов не зависит от их положения в ряду напряжений. Так, алюминий Е = = —1,67 В) и свинец Е = 0,12 В) устойчивы в разбавленной серной кислоте, а железо Е = 0,44 В) неустойчиво. В растворах едкого натра глюминий неустойчив, а магний и железо относительно устойчивы и т. д. [c.112]

    Для углеродистых, низколегированных и среднелегированных сталей реквмендовано применять электрохимическую обработку в расплаве смеси 40 - 60 % кальцинированной соды и 60 - 40 % едкого натра по режиму 450 - 500°С, плотность тока 25 - 50 А/дм , время 1 - 5 мин. [c.20]

    Электрохимические и электролитические способы очистки проверхности предметов из меди и медных сплавов применяются при необходимости удаления локальных оксидно-солевых и других загрязнений. С этой целью на очищаемый участок наносят пасту из порошкообразного цинка, алюминия или магния в 10—15 %-м растворе едкого натра или едкого кали. Вьщеляющийся в ходе реакции водород способствует восстановлению солей и оксидов меди до металла и удалению загрязнений. [c.135]


Смотреть страницы где упоминается термин Едкий натр электрохимическое: [c.113]    [c.335]    [c.634]    [c.329]    [c.582]    [c.67]    [c.170]    [c.81]    [c.165]    [c.226]    [c.9]    [c.328]    [c.60]   
Технология соды (1975) -- [ c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Едкий натр

Едкий натр производство известковым способом производство электрохимическим способом

Едкий натр, производство электрохимическое

Едкий ттр

Электрохимические способы получения едкого натра

Электрохимический способ получения хлора, едкого натра и водорода

Электрохимический способ производства едкого натра, хлора и водорода



© 2025 chem21.info Реклама на сайте