Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо координационные числа

    По сравнению с элементами подгруппы железа и кобальта и его аналогов происходит дальнейшее спаривание (п—1)й-электронов стабилизация (п—1)й-подслоя. Поэтому высшая степень окисления кобальта и его аналогов оказывается ниже, чем у рутения и ос- ия. Для кобальта наиболее типичны степени окисления - -2 и +3, а для иридия степени окисления +3 и +4 примерно равноценны. Получены также соединения родия (VI) и иридия (VI). Для элементов подгруппы устойчивы координационные числа 6 и 4 (табл. 52). [c.594]


    Координационное число металла при образовании ОЦК решетки равно восьми. Такая решетка, как уже говорилось, свойственна, например, металлическому натрию, железу при температуре до 911 °С. Атом натрия имеет один электрон на внешней электронной оболочке, с помощью которого он образует металлическую связь с другими атомами. В то же время остальные его валентные орбитали являются вакантными. Избыток числа орбиталей над числом электронов приводит к образованию такой структуры, когда каждый атом натрия создает у себя устойчивую восьми-электронную оболочку благородных газов, отстоящих как слева (N6), так и справа (Аг) от натрия в периодической системе. Это достигается при количестве ближайших атомов в кристаллической решетке (координационном числе) равном восьми. Аналогично, атом хрома в основном [c.320]

    Почему координационное число железа различно  [c.401]

    Для элементов подгруппы железа характерны координационные числа 6 и 4. Влияние степени окисления на пространственную конфигурацию молекул и комплексов показано в табл. 51. [c.581]

    Запись данных опыта. Написать уравнение реакции, учитывая, что комплекс железа (П) переходит в комплекс железа (II ) с тем же координационным числом, а перманганат калия в кислой среде восстанавливается до сульфата марганца (II). [c.125]

    Однако применение законов кинетической теории газа к электронному газу приводит к значению а, отличающемуся от эксперимента. Делокализация валентных электронов-в кристаллической решетке металла, а следовательно, отсутствие в ней направленных валентных связей объясняет тот факт, что металлы имеют большое координационное число К, плотнейшую сферическую упаковку, а также чаще всего кубическую объемно-центрированную элементарную ячейку решетки. Некоторые металлы могут кристаллизоваться в различных типах решеток например, при температуре <768 °С магнитное -железо имеет /( = 8, а при температуре >906 °С устойчивым является немагнитное у-железо с /С=12. Впрочем, для некоторых тяжелых металлов наряду с металлической связью, образованной З -электронами, реализуются слабые ковалентные связи между атомами, в то время как 45-электроны образуют электронный газ. Для такой смешанной металлической и межатомной связи характерно образование пар электронов как с параллельными, так и с антипараллельными спинами (для марганца— антипараллельные, для железа — параллельные). Этим объясняется различие в магнитных свойствах металлов параллельные спины обусловливают ферромагнетизм, т. е. положительная магнитная восприимчивость на два или три порядка [c.138]


    Помимо обычных солей -металлы семейства железа образуют многочисленные комплексные соли, для которых характерным является координационное число К = . Особо прочные комплексные соли образует железо с ионами СЫ в качестве лигандов. Желтая и красная кровяная соль , как раньше называли комплексные соединения железа — гексацианоферраты, уже давно использовались в машиностроении для химико-термической обработки стальных поверхностей — цианирование. [c.370]

    Хромопротеины — сложные белки, в состав которых входят окрашенные небелковые компоненты. Наиболее распространенными представителями хромопротеинов являются флавопротеины, у которых в качестве небелковых компонентов включены флавинмоноиуклеотид и флавиндинуклеотид, а также гемопротеины, красное окрашивание которых обусловлено наличием гема с включенным в него железом. Этот пигмент представляет собой плоскую структуру, состоящую из четырех пиррольных колец, в центре координации которых находится атом железа. Координационное число железа в составе гема равно 6, причем четыре связи заняты азотами пиррольных колец, пятая связывает гем с белком, а шестая — занята тем или иным лигандом. Пиррольные кольца соединены метиновыми мостиками, образуя тетрапиррольное кольцо, к которому присоединены винильные, метильные и пропионатные группировки (рис. 3.16). [c.49]

    Помимо нормальных химических связей, для атомов железа, кобальта и никеля весьма характерны комплексные соединения с координационным числом центрального атома 6 (реже 4). [c.126]

    Ионы, имеющие большие заряды [железо (III), алюминий], характеризуются и значительными величинами энтальпии и энтропии. Теоретическое вычисление теплот гидратации связано с учетом целого ряда слагаемых. После первых, грубо приближенных расчетов по Борну было сделано много попыток так или иначе улучшить теоретический метод. К. П. Мищенко и А. М. Сухотин, исходя из предположения, что эффективный радиус молекулы воды в гидратной оболочке равен 0,193 нм, предложили метод расчета, в котором были приняты во внимание экзоэффекты взаимодействия иона с жесткими диполями воды, а также ориентационной и деформационной поляризации диполей воды, дисперсионные силы между ионом и молекулами воды, взаимное отталкивание диполей в гидратной сфере, отталкивание иона и диполей при перекрытии их электронных оболочек, поляризация растворителя гидратным комплексом и взаимодействие между водой и гидратным комплексом, отвечающее экзоэффекту. Большое число факторов, принятых во внимание в этих расчетах, делает их результаты наиболее надежными. Между прочим указанные авторы пришли к выводу, что тепловое движение не может существенно влиять на координационные числа гидратации вероятность того, что данная молекула в гидратном слое покинет его и оставит свободное место в гидратной оболочке иона, колеблется по порядку величины от 10 (ион лития) до 10 (ион цезия), т. е. ничтожно мала. [c.255]

    Определите степень окисления и координационное число железа и кобальта в соединениях K4[Fe( N)6], Кз[Ре(СЫ)б]2, Fe4[Fe( N)в]з. (ЫН4)2[Со(СЫ5)4]. [c.78]

    Комплексные соли. Железо образует многочисленные комплексные солн, в которых атомы железа могут входнть в состап как комплексных катионов, так п комплексных анионов. В состав те.х и других комплексных ионов атомы железа могут входнть в степени окисления +2 и +3. Координационное число атомов железа во всех этнх комплексах обычно равно шести. [c.307]

    Какие соединения называются комплексными ф2. Можно ли провести резкую границу между двойными и комплексными солями 3. Составьте уравнения электролитической диссоциации солей KA1(S04)2, [ u(NH3)4]S04, Na3[ o(N02)6]. 4. Каков заряд железа в солях Кз[Ре(СК)б], K4[Fe( N)e], [Рез[Ре(СН)в]2, Ре4[Ре(СК )б]з ф5. Что называется комплексообразователем лигандами внутренней и внешней сферой комплексного соединения в. Определите заряд и координационное число комплексообразова-теля в "следующих комплексных соединениях [Р1(ЫНз)4]С12, К2[Р1С1б], K2[ o(S N)4], Кз[Со(К02) ], [ o(NH3)6(N02)] b, [ZniHsOjeJ b. 7. Для каких элементов периодической системы Д. И. Менделеева характерно образование комплексных соединений 8. Координационное число некоторого двухзарядного иона [c.160]

    У атома хрома на два электрона больше, чем у атома титана, а у атома железа— на четыре, а у атома никеля — на шесть. После спаривания электронов у этих атомов остается, соответственно, 6, 5 и 4 свободных орбитали, что и проявляется в их координационных числах [Сг(СО )б], [Ре(СО )5] и [N (00)4]. [c.112]

    Таким образом, ион двухвалентного железа обладает шестью свободными орбиталями и его координационное число К=6 К4[Ре(СЫ)е]. Строение внешних электронных уровней атома и иона никеля  [c.89]


    Железу и кобальту свойственно координационное число K=Q, а никелю — два координационных числа /( = 6 и /( = 4. [c.369]

    Руководствуясь правилом Сиджвика, найдите координационное число для центрального атома в карбонилах хрома, железа и никеля. Напишите их формулы, определите тип гибридизации орбиталей и соответствующую геометрическую конфигурацию каждого комплекса. [c.141]

    Железо обладает ярко выраженной склонностью к образованию комплексных соединений с координационным числом, чаще всего равным 6. Из устойчивых комплексных соединений железа заслуживают внимания гексациано-(II) феррат калия K4[Fe( N)6] желтая и гексациано-(III) феррат калия Кз Ре(СЫ)б] красная кровяные соли. Эти соли используются в аналитической химии для обнаружения ионов Ре + и Ре2+ в растворах  [c.213]

    Двухвалентное железо (координационное число 6) может образовывать комплексы различного состава и свойств катионного типа, например [Ре(Н20)вР С , нейтральные, например [Ре(Н20)4С1г] и анионного типа, например [Ре(СЫ)в] К4. [c.106]

    Атомно - металлические кристаллы вследствие не-локализованностн металлической связи хара1 теризуются высокими координационными числами. Для них наиболее характерны три типа кристаллических решеток (рис. 65) кубическая гранецентрирован-ная (к. ч. 12), гексагональная (к. ч. 12) и кубическая объемноцентри-рованная (к. ч. 8). Кубическую гранецентрированную решетку имеет, например, медь, кубическую объемноцентрированную — железо, гексагональную — магний. [c.101]

    К4[Ре(СК)в], Кз[Ре(СМ)в]. Дело в том, что практически все лиганды (в том числе Н2О и МНз) в комплексах с катионами триады железа создают недостаточно сильное кристаллическое поле, в котором энергия расщепления меньше энергии спаривания . Соответствующие высокоспиновые комплексы сравнительно малоустойчивы (внешняя 5/ -гибридизация). Лишь лиганды С , возглавляющие спектрохимический ряд , образуют низкоспиновые комплексы с внутренней а 5/7 -гибридизацией, устойчивость которых весьма высока. Так, [Ре(СМ)б] " имеет рЛ сст 36, а [Pe( N)e] — р/Сн сг 44. Этот пример показывает, в частности, что с увеличением степени окисления комплексообразователя (при сохранении координационного числа) параметр расщепления увеличивается и растет устойчивость комплекса, так как один и тот же лиганд создает более сильное кристаллическое поле. Именно поэтому амминокомп-лекс [Со(МНз)о1 значительно стабильнее (р-/( ,,ст 39), чем [ o(NHз)вJ-+ (р-Л сст 6), и в отличие от последнего является диамагнитным . Отсюда следует также вывод о том, что в комплексных соединениях устойчивость степени окисления +3 для кобальта существенно возрастает и становится наиболее характерной для этого элемента. [c.410]

    Замечательно, что различные структурообразующие факторы не только сосуществуют, но и дополняют друг друга. При их разных сочетаниях осуществляется либо кристаллизация с различной плотностью укладки структурных единиц, либо более сложный процесс, который можно называть в отличие от кристаллизации структурообразованием, приводящий к образованию невообразимого множества однотипных, но все же различных индивидуальных структур, о которых говорилось выше. Таким примером снижения плотности укладки малых нульмерных структурных единиц в результате вмещательства ковалентной составляющей связи является образование сравнительно неплотных кристаллических структур щелочных металлов и металлов IV В — VI В групп, а также железа, для которых координационное число равно всего восьми. [c.160]

    К раствору нитрата железа (III) добавьте тиоцианат калия. Запишите процессы ступенчатого образования всех возможных комплексов с учетом того, что координационное число для железа (III) равно шести. Как влияет на интенсивность окраски добавление избытка тиоцианата калия и нитрата железа (III), если считать, что максимальную интенсивность окраски имеет комплекс [Fe(N S)4X Х2Н2О]-. [c.292]

    Координационное число иона металла часто зависит от относительных размеров самого иона металла и окружающих его лигандов. Чем крупнее лиганды, тем меньше их может координироваться вокруг иона металла. Это объясняет, почему железо способно координироваться шестью фторид-ионами в РеР и только четырьмя хлорид-ионами в РеС14. Лиганды, которые переносят на центральный атом металла значительный отрицательный заряд, также способствуют уменьшению координационного числа. Например, в комплексе Nl(NHз)й вокруг атома никеля(П) могут координироваться шесть нейтральных молекул аммиака, а в комплексе МСЦ вокруг такого же никеля(П) координируются лишь четыре отрицательно заряженных хлорид-иона. [c.372]

    В большинстве других комплексных соединений, как и в рассмотренных циа-ноферратах, координационное число железа (П) и железа (П1) равно шести. [c.527]

    При объяснении эксперимента учтите, что в результате реакции, как предполагают, образуется комплексный ион [Ре(Р04)г] , который бесцветен. Каково координационное число железа в этом соединении Какова дентантность фосфат-иона  [c.402]

    В большинстве комплексных соединений элементы УП1Б группы имеют координационное число 6 (октаэдрическая форма) железо, кобальт н никель образуют также комплексы с координационным числом 4 (тетраэдрическая форма) палла-дин(П) и платина(П)—комплексы с тем же координационным числом, но с плоскоквадратной геометрией. [c.245]

    В соответствии с теорией кристаллического поля плоскоквадратные комплексы часто встречаются у ионов с электронной конфигурацией (никель, палладий, платина) и (медь). Если ион не имеет ЭСКП, то обычно легко образуются тетраэдрические комплексы (й1°, с1 , й( °) это происходит в комплексах железа (111), цинка (И), алюминия (111), кадмия (11), марганца (II). Относительно высокие координационные числа характерны для легких переходных металлов. Поэтому квадратные комплексы чаще встречаются в соединениях меди, палладия, платины, а ионы с конфигурацией с1°—Ф обычно дают октаэдрические комплексы. Тип химической связи в комплексах зависит от положения соответствующего иона в последовательности переходных металлов ионы металлов, расположенных в начале ряда, дают преимущественно ионные комплексы, а в конце — ковалентные [ионные комплексы образует, например, ион титана (И), а ковалентные — ионы никеля или меди (II)], Комплексы анионного типа (например, СоС ) обычно имеют меньшие координационные числа, чем катионные. [c.227]

    Наиболее знакомый нам гемоглобин — металлопротеин со значительно большей молекулярной массой, чем миоглобин, состоит из двух пар субъединиц, в каждой из которых имеется по одному атому железа (см. гл. 13), заключенному в порфириновый цикл. Как и все переносчики О2, гемоглобин может существовать в двух формах диоксигенированной (диоксиформа) и оксигенированной (оксиформа). В первой из них железо (II) — высокоспиновый ион (s = 3/2), он не входит в порфириновое окно (или полость ), а возвышается над ним. Во второй форме (после присоединения кислорода) по перпендикулярной схеме Fe (И) характеризуется нулевым спином (s = 0) и находится в плоскости, образованной четырьмя атомами пиррольного азота. По-видимому, размеры иона Fe + в высокоспиновом и низкоспиновом состояниях разные и координационное число меняется от 5 до 6—7. Поглощение кислорода гемоглобином происходит при определенном pH раствора, в котором растворен кислород. [c.570]

    Способность к образованию комплексных соединений, свойственная всем переходным металлам, наиболее ярко проявляется у элементов УИ1В-группы, в частности у элементов триады железа. Помимо дефектности -оболочки, здесь немаловажную роль играет то, что атомные и ионные радиусы Ре, Со, N1 наименьшие среди За -элементов, в силу чего увеличивается поляризующее действие и образуются более прочные связи с лигандами. Помимо катионных аквакомплексов [Э(Н20)в]2+ и [Э(Н20)в] +, известны и аммиакаты с координационным числом 6 [Э(NHз)oI и [Э(NHз)в] +, а также смешанные акваамминокомплексы, например [Э (NHз)5 (НаО)]- . Устойчивость аммиачных комплексов Э(+2) увеличивается в ряду Ре—Со—N1. Это объясняется внешней 5р й( -гибридизацией с образованием высокоспиновых комплексов у всех трех элементов вследствие сравнительно слабого кристаллического поля, создаваемого лигандами NHз. При этом оставшиеся валентные электроны Э распределяются по -орбиталям в соответствии с правилом Гун-да  [c.409]

    Соли кобальта (II) и (III) так же, как и ионы железа, легко образуют комплексные соли с координационным числом /( = 6 с лигандами С1 NH3 HjO MS . Так, например, соль СоС1з-6Н50 может рассматриваться как комплексная соль (раствор)  [c.372]

    Атомы Ре, Со и N1 имеют по два 45-электрона и соответственно 6, 7 и 8 электронов в Зс(-подуровне. Заполнение вторыми электронами За[-ячеек сказывается на уменьшении окислительных чисел при переходе от Ре к N1. Аналогичная тенденция наблюдается и в других триадах. Если для марганца характерно высшее окислительное число +7, то у железа оно не бывает больше -f 6 (чаще - -3 и -Ь2), у кобальта дости-гаетН- 4 и у никеля + 3. В простых соединениях у кобальта окислительное число преимущественно +2, а в комплексных соединениях +3. У никеля оно почти всегда +2 и очень редко -)-3. Очевидно, не все электроны незаполненного Зй(-подуровня участвуют в валентных связях. Для Ре, Со и N1 характерно образование комплексных соединений с координационными числами 6 и 4. [c.343]

    При высокой концентрации тиоцианат-ионов получаются комплексные соединения с большим числом лигандов, например K3iFe(N S)J. Координационное число железа в комплексных соединениях равно шести. [c.428]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]


Смотреть страницы где упоминается термин Железо координационные числа: [c.586]    [c.623]    [c.626]    [c.257]    [c.52]    [c.76]    [c.132]    [c.181]    [c.338]    [c.351]    [c.194]    [c.375]    [c.266]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Координационное числ

Координационные по координационному числу

Число координационное



© 2024 chem21.info Реклама на сайте