Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоумножитель усиление

    Фотоумножитель представляет собой прибор, состоящий из фотоэлемента, между катодом и анодом которого расположены вторичные эмиттеры электронов (диноды), обеспечивающие внутреннее усиление фототока в 10 —10 раз. Для дополнительного усиления фототока применяют усилители постоянного и переменного тока. Однако более точные результаты измерений можно получить компенсационным методом, т. е. сравнением двух фототоков от одного и того же или от разных ФЭУ. [c.79]


    В пятой колбе вместимостью 50 мл студент получает у преподавателя контрольный раствор пробы воды. После приготовления растворов включают и настраивают прибор. Каждую примесь определяют, используя соответствующую лампу с полым катодом. Устанавливают ток питания лампы, напряжение фотоумножителя, коэффициент усиления фототока, длину волны резонансной линии определяемого элемента. Необходимые параметры приведены в табл. 4, После установки [c.38]

    Одна часть монохроматического излучения элемента от лампы с полым катодом проходит через пламя 5 и фокусируется на входной щели 7 монохроматора. Другая часть светового потока минует пламя и затем совмещается с первой с помощью тонкой. пластинки 6. Выделенное монохроматическое излучение попадает на фотоумножитель или фотоэлемент 10. Ток усиливается в блоке 11 и регистрируется измерительным прибором 12. Раствор поступает в пламя через горелку (атомизатор) 4. Важнейшей проблемой в атомной адсорбции является отделение резонансного излучения элемента в пламени при данной длине волны от аналитического сигнала. Для этого падающее на поглощающий слой и контрольное (не проходящее через пламя) излучение модулируют или с помощью вращающегося диска 2 с отверстиями, или путем питания лампы с полым катодом переменным или импульсным током. Усилитель 11 имеет максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода. Лампы с полым катодом обычно одноэлементны и чтобы определить другой элемент, нужно сменить лампу, что увеличивает время анализа. Многоэлементные лампы, которые используют в атомно-абсорбционных многоканальных спектрофотометрах, позволяют одновременно определять несколько элементов. Атомно-абсорбционный метод может быть полностью автоматизирован, начиная от подачи проб до обработки результатов измерений. При этом производительность метода составляет до сотен определений в 1 ч. [c.50]

    Выполнение работы. Построение градуировочного графика. Включают прибор, устанавливают в рабочее положение лампу с полым катодом на медь и дают прогреться электронной системе в течение 15—30 мин. Доводят разрядный ток лампы до значения, указанного в инструкции. Устанавливают необходимые усиления, напряжения для фотоумножителя и постоянной времени. Выводят на щель монохроматора аналитическую линию меди 324,7 нм по максимальному отклонению стрелки измерительного прибора. Устанавливают измерительную стрелку на 00 по шкале пропускания Т, или на О по шкале поглощения А, изменяя ширину щели. Ширина щели не должна превышать 0,1 мм. В противном случае увеличивают напряжение тока для фотоумножителя или степень усиления. Устанавливают по ротаметрам вначале нужный расход воздуха (480 л/ч), затем пропан-бутановой смеси и поджигают пламя. Поджиг начинают несколько раньше, чем подачу горючего газа. Проверяют работу распылителя и стабильность пламени. Внут--ренний конус пламени должен иметь минимальную высоту при сохранении зеленовато-голубой окраски. Корректируют нуль прибора при распылении в пламя дистиллированной воды. Поочередно фотометрируют стандартные растворы не менее трех раз каждый, начиная с наименее концентрированного. После каждого стандартного раствора устанавливают нулевое поглощение прибора по дистиллированной воде. По результатам измерения абсорбции стандартных растворов строят градуировочный график в координатах абсорбция — концентрация меди (в мкг/мл). [c.51]


    I Фотоумножители имеют большое внутреннее сопротивление и поэтому на выходе можно включить высокоомное сопротивление, если требуется дальнейшее усиление фототока. Если усиление, даваемое фотоумножителем, достаточно, то можно прямо включить показывающий или регистрирующий приборы. [c.189]

    Только в редких случаях сигнал, снимаемый с приемника света, можно сразу измерять показывающим или регистрирующим прибором. Так, при пламенной фотометрии имеют дело с относительно большими световыми потоками. Поэтому на выходе фотоумножителей получается достаточно большой ток, который можно легко и точно измерять без дополнительного усиления. В большинстве других случаев даже применение умножителей не избавляет от необходимости дополнительного усиления сигнала. [c.190]

    В таких случаях можно применять схему прямого усиления. На выходе усилителя (или прямо фотоумножителя) включают показывающий или регистрирующий прибор. При хорошей линейности усилителя показания прибора пропорциональны интенсивности спектральной линии и все измерение сводится к взятию отсчета со шкалы прибора. Обычно в этих условиях измеряют абсолютную интенсивность спектральной линии, но если нужно использовать относительную интенсивность двух линий или аналитической линии и неразложенного света, то необходим второй измерительный канал. Наиболее просто оба приемника света включать навстречу друг другу, так чтобы на вход усилителя (или сразу на показывающий прибор) попадал разностный сигнал. Если характеристики обоих приемников достаточно хорошо совпадают, то показания шкалы прибора будут пропорциональны относительной интенсивности. [c.197]

    Электрический сигнал, снимаемый с анода фотоумножителя, мож о непосредственно подавать на осциллограф. При этом сопротивление анодной нагрузки подбирается исходя из длины и волнового сопротивления кабеля так, чтобы не было затяжки электрического сигнала. Иногда для согласования высокого выходного сопротивления ФЭУ с низкоомным кабелем используется катодный повторитель, называемый усилителем мощности, который имеет высокое входное сопротивление и низкоомный выход. Аналогичные эмиттерные повторители, собранные на транзисторах, хотя и занимают мало места, но менее предпочтительны из-за высокого коэффициента шумов. Усиление сигнала при помощи вертикального усилителя осциллографа возможно при наличии дифференциального усилителя, позволяющего компенсировать отклонение нулевой линии. [c.185]

    Отметим, что важнейшей характеристикой сцинтилляционного счетчика и всей регистрирующей аппаратуры являются дискриминационные кривые, которые показывают зависимость количества зарегистрированных импульсов от начального порога дискриминации при ширине окна дискриминации 1 В. Форма дискриминационных кривых зависит от спектрального состава рентгеновского излучения, направляемого на сцинтиллятор, напряжения на фотоумножителе и коэффициента усиления. Неизменность по времени дискриминационной кривой зависит от стабильности работы всего комплекса рентгеновской аппаратуры. При правильном выборе режимов работы счетчика амплитуд- [c.98]

    Из-за больщого внутреннего усиления фотоумножительные трубки используют лишь при низких интенсивностях света. При повышении мощности экспозиция трубки освещением даже умеренного уровня может приводить к необратимым изменениям поверхности катода. Поэтому фотоумножители всегда заключают в светонепроницаемые корпуса с регулируемой величиной окошка. [c.177]

    Для работы фотоумножителя необходим источник высокого напряжения (порядка 1200 В). Хотя многие фотоумножители работают в интервале напряжений 900—1000 В, источник высокого напряжения должен быть отрегулирован на интервал 500—1200 В. Характеристика усиления фотоумножителя в большой степени зависит от высокого напряжения. Поэтому источник высокого напряжения должен работать очень стабильно. [c.177]

    Измерительное устройство, предназначенное для определения интенсивности флуоресценции от кюветы с образцом, состоит из анализирующего монохроматора такого же тип , что и монохроматор возбуждения, снабженного чувствительным фотоумножителем Рь После усиления сигнал от фотоумножителя Pi поступает в разностный самописец. [c.271]

    После усиления выходной сигнал от фотоумножителя поступает на самописец. [c.281]

    Образец полимера помещают на поверхность нагревательного блока с контролируемой температурой, который находится внутри светонепроницаемого корпуса. После этого образец нагревают в атмосфере какого-либо газа, например кислорода. Свет, испускаемый полимерным образцом, проходит через стеклянный фильтр и попадает в фотоумножитель. После усиления сигнал от фотоумножителя подается в самописец. [c.286]

    В большинстве флуорометров в качестве детекторов используются фотоумножители существует много типов фотоумножителей со специальными характеристиками в отношении спектральной области максимальной чувствительности, электрического шума и усиления. После усиления фотоэлектронного тока его значение либо отсчитывается визуально на измерительном приспособлении, либо регистрируется. [c.53]


    На рис, 46 представлена принципиальная схема установки для атомно-абсорбционного анализа. Свет от разрядной трубки 1 (полый катод, покрытый внутри определяемым металлом) проходит через пламя горелки 2 и фиксируется на ш,ели монохроматора 3. Затем излучение попадает на фотоумножитель или фотоэлемент 4. Ток усиливается в блоке 5 и регистрируется измерительным устройством 6. Определение заключается в измерении отношения световых потоков прошедшего через пламя с введенным в него анализируемым веществом и без него. Поскольку свечение линии исследуемого элемента в пламени горелки оказывается более интенсивным, чем их интенсивность, полученная от полого катода, то излучение последнего модулируют. Модуляция излучения осуществляется вращающимся диском с отверстиями (модулятор 7), расположенным между полым катодом и пламенем. Усилитель 5 должен иметь максимальный коэффициент усиления для той же частоты, с ка-> кой модулируется излучение полого катода. [c.250]

    Усиление фототека. В приборах с фотоэлементами или фотоумножителями усиление фототока не представляет трудностей и осуществляется с помощью ламповых усилителей. Для усиления сигнала, снимаемого с термоэлемента, применяют так называемые фотоэлектроопти-ческие усилители с низкоомным входом. Их можно использовать и при работе с болометрами. Однако более удобно для питания болометра подавать переменную э. д. с. и усиливать сигнал с помощью лампового усилителя переменного тока. [c.304]

    Принципиальная схема атомно-абсорбционного спектрофотометра показана на рис. 3.35. Свет от источника резонансного излучения пропускают через пламя, в которое впрыскивается мелкодисперсный аэрозоль раствора пробы. Излучение резонансной линии выделяют из спектра с помощью монохроматора и направляют на фотоэлектрический детектор (обычно фотоумножитель). Выходной сигнал детектора после усиления регистрируют гальванометром, цифровым вольтметром или записывают в аналоговой форме на ленте пишущего потенциометра. Для увеличения производительности спектрофотометры снабжаются устройствами цифропечати и автоматической подачи образцов. [c.144]

    В последние десятилетия получили широкое распространение сцинтиляционные счетчики. Они состоят из люминес-цирующего кристалла (например, Ыа I, активированный таллием), фотоэлектронного умножителя и усилителя. Рентгеновский квант вызывает ионизацию большого чиспа атомов или ионов в кристалле, которые испускают ультрафиолетовое излучение, возвращаясь в стабильное состояние. Кванты этого излучения выбивают электроны с катода фотоумножителя, которые после ускорения попадают на электрод умно-жительной системы (динод). Каждый из электронов выбивает вторичные электроны, и после повторения этого процесса на 10-15 каскадах первоначальный импульс усиливается в Ю" -10 раз. Для регистрации достаточно усиления этих импульсов примерно в тысячу раз. Как и в случае пропорциональных счетчиков, амплитуда импульса пропорциональна энергии кванта и возможно применение хшфференциальной дискриминации (с теми же оговорками относительно статистического характера процесса). [c.24]

    В результате многократного отражения на внутренней поверхности сферы создается усредненная освещенность. В регистрирующей схеме в качестве приемника энергии используют фотоумножитель ФЭУ-39, в интегрирующей сфере для него имеется специальное отверстие. Перед торцом фотокатода установлен затвор, позволяющий открывать фотоумножитель только на время измерения. Напряжение питания иа ФЭУ подается от высоковольтного выпрямителя ВС-22. Фотоумножитель подключен к селективному микровольтметру В6-4, настроенному на частоту модуляции светового иоюка. С выхода вольтметра усиленный сигнал поступает иа синхронный детектор КЗ-2 продетектированный сигнал записывается электронным потенциометром ЭПП-09, [c.169]

    Принцип метода понятен из рассмотрения схемы установки (рис. 7.9). Анализируемый раствор распыляют в пламя, где вещество превращается в атомный пар. В пламени происходит термическое возбуждение атомов и молекул, которые затем переходят в основное состояние с испусканием квантов света. Излучение находящихся в пламени частиц анализируется с помощью спектрального прибора. Монохроматизированиый свет детектируется с помощью фотоэлемента или фотоумножителя, и после усиления фототока регистрирующее устройство измеряет аналитический сигнал. Аналитический сигнал при определенных условиях линейно связан с концентрацией элемента в растворе. [c.121]

    Снс1ема детектирования и регистрации сигнала (фотоэлементы или фотоумножители, электронные схемы усиления и электрические приборы для получения сигнала пли непосредственной записи нзм(фе[П1Й), [c.126]

    Типичная величина коэффициента усиления фототока равна 10 или даже выше, что достигается увеличением напряжения между каждым из динодов. Однако с увел 1чеиием напряжения возрастает также темновой ток фотоумножителя и соответственно флуктуации темпового тока (обычно называемая темновой шум ), К тому же с увеличением напряжения между динодами растет дробовой шум , т. е. шум, обусловленный статистическими изменениями выхода электронов из материала динодов. Обычно величина дробового шума пропорциональна квадратному корню из интенсивности излучения, падающего на фотокатод. [c.156]

    Следовательно, чтобы получить высокий коэффициент усиления при низком уровне шума, необходимо контролировать величину общего коэффициента усиления всей системы регистрации атомно-абсорбционного сигнала, раздельно выбирая коэффициент усиления фотоумножителя и последующего за ним в электронной цепи регистрации усилителя, чтобы обеспечить наилучшее соотношение сигнал/шум. После усилителя электронный сигнал фиксируется с помощью либо стрелочных приборов п самописцев, либо цифровой регистрации. В последних моделях атомио-абсорбцион-ных спектрофотометров для обработки сигнала используют встроенные микроЭВМ. [c.156]

    Современные серийные спектрополяриметры имеют рабочую область от 185 до 700 нм. Блок-схема спектрополяриметра представлена на рис. 22. Источником света 1 служит мощная ксено-новая лампа с непрерывным спектром излучения. Для лучшей монохроматизации света и исключения случайного излучения применяются двойные монохроматоры 2. За монохроматором 2 расположен поляризатор 3, преобразующий естественный свет в плос-кополяризованный. Назначение модулятора 4 состоит в преобразовании света с постоянной плоскостью поляризации в свет с плоскостью поляризации, совершающей малые колебания около своего положения равновесия. Модуляции можно добиться или малыми механическими качаниями поляризатора, или помещением в пучок света попеременно пластинок из лево- и правовращающего кварца, или установлением ячейки Фарадея. (Ячейка Фарадея состоит из невращающего кварца и намотанного на него соленоида, по которому пропускается переменный ток. Под действием переменного тока кварц становится то лево-, то правовращающим.) Свет с модулированной поляризацией попадает на кювету 5 с образцом, а затем на анализатор 6. Анализатор 6 находится в скрещенном положении к поляризатору 3, т. е. пропускает лишь свет с поляризацией, перпендикулярной поляризации света, вышедшего из поляризатора 3. Наконец, свет падает на фотоумножитель 7 и усиливается резонансными усилителями 8. Усиленный сигнал подается на мотор, который вращает анализатор 6. [c.40]

    Количественное изучение люминесценции требует использования специальных методик, часть из которых описана в этом разделе. Интенсивности флуоресценции, фосфоресценции и хемилюминесценции обычно существенно ниже, чем у световых потоков, применяемых для фотолиза или возбуждения. Поэтому фотографическая регистрация спектров люминесценции может дать данные об интенсивности, усредненные по периоду времени экспозиции, а также о спектральном распределении излучения. Однако обычно при количественных исследованиях используются фотоэлектрические методы регистрации из-за их лучщей чувствительности и скорости отклика. Можно изготовить фотоэлементы типа описанных в предыдущем разделе для регистрации излучения вплоть до длины волны света порядка 1300 нм, подбирая подходящий катод (Ад—О—Сз). Коротковолновая граница регистрации определяется в большей степени пропусканием окон фотоэлемента, чем свойствами катода. Стандартный способ расширения области регистрации в УФ-область состоит в покрытии передней стенки фотоприемника флуоресцирующим материалом, преобразующим УФ-из-лучение в видимое, которое и регистрируется фотоприемником через стеклянное окно. Слабый ток фотоприемника можно усилить с помощью стандартных электронных устройств, этим путем удается регистрировать слабые свечения. Усиление неизбежно приводит к появлению некоторого уровня шума, поэтому слабое свечение лучше регистрируется фотоумножителями. Фотоумножитель фактически является фотоэлементом с внутренним усилением, который почти лишен шума. Рис. 7.3 по- [c.189]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]

    Электронный анализатор, например сферические электроды, в фокусе которого размещают мультидетекторную систему, состоящую из двух плотно пригнанных друг к другу плоских канальных детекторов (каналтронов), которые обеспечивают высокую степень усиления (10 ) электронного пучка, сфокусированного в детекторе. Все импульсы преобразуются в оптический сигнал при помощи флуоресцентного экрана. Фокальная плоскость непрерывно сканируется фотоумножителем (или телевизионной камерой). Усиленный фотоумножителем сигнал поступает на обработку в компьютер для преобразования его в конечный фотоэлектронный спектр. [c.141]

    Характеристики твердотельного детектора отраженных электронов являются также привлекательными при получении изображений с высоким разрешением. Поскольку такой детектор создает сигнал, пропорциональный энергии электрона, и может не реагировать на электроны с энергией ниже порого Вой, он подчеркивает высокоэнергетическую часть сигнала, которая желательна для получения изображений с высоким разрешением. Малое усиление твердотельного детектора (10 ) по сравнению с фотоумножителем (10 ) ведет к ограничению скорости развертки при полученпп изображений с высоким разрешением и к возрастанию трудностей при работе с очень малым током. [c.164]

    Сцинтилляционные счетчики требуют небольших усилителей, так как значительное усиление происходит в фотоумножителях. Плато по усилению и напряжению фотоумножителя имеет наклон, который объясняется существованием заметного числа малых импульсов, даваемые сцинтиллятором. Эти импульсы возникают вследствие поликристалличности ZnS и недостаточной прозрачности его к собственному излучению. Наклон плато делает необходимым хорошую стабилизацию напряжения питания и коэффициента усиления. [c.147]


Смотреть страницы где упоминается термин Фотоумножитель усиление: [c.304]    [c.150]    [c.40]    [c.48]    [c.150]    [c.157]    [c.198]    [c.191]    [c.129]    [c.457]    [c.457]    [c.271]    [c.276]    [c.569]    [c.271]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.72 , c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Усиление

Фотоумножитель



© 2025 chem21.info Реклама на сайте